Power Valve Precision Regulator **VEX1** 3 3 Series

High precision, large capacity relief regulator

A 3 port large exhaust capacity pressure reducing valve which utilizes a nozzle flapper mechanism available as air operated or manual types.

Precise pressure setting

Having a relief Cv value that is similar to the supply Cv value, this regulator responds quickly in order to set a precise outlet pressure even when the outlet volume and the pressure fluctuations are large.

High precision

This regulator is well-suited for balancer applications because it minimizes pressure fluctuations with its large-volume supply/exhaust capability, in addition it features high precision F.S. (full span) sensitivity within 0.2% and F.S. repeatability of $\pm 0.5\%$.

Manifold capable

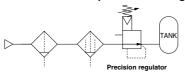
VVEXB 1/8—Up to 10 stations VVEX2 1/4—Up to 8 stations

Rich line-up

Port sizes available from M5 to 2 inches, most flow rates and pipes can be accommodated.

-Minimum size VEX1^A 33

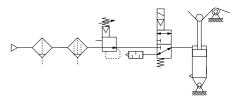
- Non-grease only for VEX1^A_B33
- Seal materials (NBR, FKM) only for VEX1^A 33

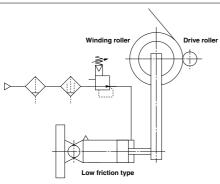


Air operated type

Application Example

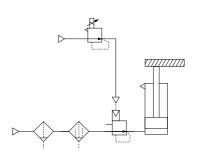
Relief Type Regulator


Precise internal tank pressure setting


 Large effective areas of both supply and exhaust sides make it possible to precisely set large-flow internal tank pressure.

Accurate Pressure Setting

Sensitivity within 0.2% F.S. (Full span) Tension control


Contact Pressure Control

 Pressure is kept steady, responding rapidly to the position change of the piston in the cylinder.

Balance and Drive

Accurate balance pressure setting

 Pressure changes during cylinder actuation are suppressed, balancing the cylinder in both static and dynamic conditions.

ARJ

AR425 to 935

AMR ARM

ARP

IR□-A IR

IRV

VEX

SRH

SRP SRF

IC

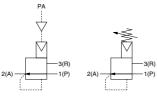
ITVH

PVQ

VY1
VBA
VBAT

Specifications

Model		VEX.	1A33	VEX.	1B33	VEX	1133	VEX	123 ₃	VE	X13	303	VE	X15	303	VEX	173 ⁰ ₃	VEX	193 ₃
	Port	M5	01	M5	01	01	02	01	02	02	03	04	04	06	10	10	12	14	20
Port size	1(P) 2(A)	M5	1/8	M5	1/8	1/8	1/4	1/8	1/4	1/4	3/8	1/2	1/2	3/4	1	1	11/4	11/2	2
	3(R)															11/4		2	
Operation		Manual ki	nob (Push	locking slo	tted type)		M	anual k	nob (Pi	ush lo	ckin	g slot	ted t	ype)	and a	Air ope	rated ty	pe	
Pilot		Internal pilot (External pilot can be switched. * Refer to "How to Switch to External Pilot" on page 843.																	
Fluid		Refer to Applicable Fluids. Air																	
Supply pressure		(Set pressure + 0.1 MPa) to Max. 1 MPa * Refer to "Precautions".																	
Setting pressure r	ange	0	.01 to 0	0.7 MPa 0.05 to 0.7 MPa															
Ambient temperat	ure (1)								0 to	60°C	;								
Fluid temperature	(1)			VEX18: /EX183								0 to	60°C	;					
Repeatability							W	ithin ±	0.5% l	F.S.	(Full	spa	n)						
Sensitivity							٧	/ithin (.2% F	.S. (Full	spar	1)						
Linearity (3)			_						W	/ithin	±1%	6 F.S	S. (F	ull sp	oan)				
Air consumption	2)					9.5	L/min	(ANR)	(at su	pply	pres	sure	1.0	MPa	a)				
Mounting									Fr	ee									
Weight (kg)		0.1	15	0.1	8(4)	0.	2	0.3	3 (4)		0.5			1.4		2	2	4	1


Note 1) No condensation.
Note 2) Large amount of air is exhausted all the time.
Note 3) Applicable only to air operated type.
Note 4) With sub-plate.
Note 5) Non-lubricated specifications are not available for valve sizes 1 to 9.

Applicable Fluids

Model	VEX1 ^A 33 (Seal material: NBR seals)	VEX1 ^A 33 <u>B</u> (Seal material: FKM seals)
Fluid	Air (Normal, Dry)	High temp. air (Max. 99°C)

Symbol

Air operated type

Manual knob type

Power Valve/Precision Regulator **VEX1** 3 Series

∆Caution

Using the External Pilot 1. If a pressure difference over 0.1 MPa between **VEX1** A 33 B the supply and the set pressure cannot be maintained, change to an external pilot to obtain the necessary pressure difference. Regulator valve Option 2. If a mist separator cannot be installed on the eal material В Bracket supply side, change to an external pilot, and NBR seals F Foot make sure to install a mist separator on the FKM seals G Pressure gauge pilot side. Note) Silencer Refer to Applicable Type for bleed port How to Switch to External Pilot Fluids on page 842. Precision regulator 1. Using a flat head screwdriver, remove the fixed orifice from port P1. Threads (1/8 only) Operation • 2. Install the fixed orifice facing in the opposite Nil Manual knob direction (external pilot). Install it carefully F N NPT to prevent damage to the O-ring. Port size (4) Body size NPTF 3. Tighten the fixed orifice again and connect Port size Body size the pilot piping to port P1 using an M5 Port 1(P), 2(A), 3(R) fitting. M5 Body ported 01 Nil Without sub-plate Base mounted M5 Position for port P1 01 VEX1 G Regulator valve Option Dimensions of port P1 В Bracket <Internal pilot> F Foot Type Fixed orifice G Pressure gauge Precision regulator Silencer Operation N - Port P1 for bleed port Air operated type Manual knob type 3 <External pilot> Thread type Fittings for M5 Port size (4) Body size Nil Rc Port size G Note 1) Body size Port 1(P), 2(A) 3(R) N NPT 01 NPTF 1 02 • For VEX1□3□ (NBR seals) 02 1/4 03 Fixed orifice assembly (with O-ring) part no.: 3 VEX1-A30-3 04 **3ody ported** For VEX1^A_B 33B (FKM seals) 04 Fixed orifice assembly (with O-ring) part no.: 06 VEX1-A30-3B 10 Note) O-rings cannot be shipped as a single unit. 10 7 11/4 11/4 12 14 11/2 9 2

How to Order

mounted Option (2)

2 01 02

Base

4 v.v.										
Description			Part no.							
		VEX1A33	VEX1B33	VEX1133	VEX123	VEX1333	VEX1533	VEX1733	VEX1933	
Bracket (With bolt and washer)	В	VEX1-18-1A	_	VEX1-18-1A	_	VEX3-32A	VEX5-32A	VEX7-32A	VEX9-32A	
Foot (With bolt and washer)	F	VEX1-18-2A	_	VEX1-18-2A	_	_	_	_	_	
Pressure gauge (3)	G	G27-10-	G27-10-R1-X207		G27-10-01 G36-10		G46-10-01			
Silencer for bleed port (PE)	N	AN120-M5								

Note 1) Not conforming to ISO1179-1.

20

Nil

Note 2) The optional parts are shipped in the same package.

2

Without sub-plate

Note 3) If a pressure gauge other than that which is indicated in the option table is to be used, also enter the part number of the pressure gauge.

Refer to the pressure gauge guide in Best Pneumatics No. 7 for details.

Example: VEX1333-03

G36-4-01

Note 4) Face seal type One-touch fittings cannot be used.

ARJ

AR425

to 935

ARX

AMR

ARM

ARP

IR□-A

IR

IRV

VFX SRH

SRP

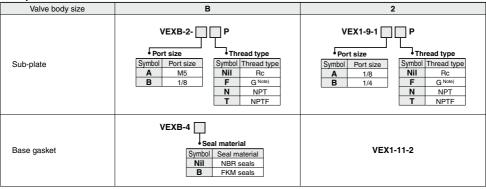
SRF

ITV

IC

ITVH

ITVX


PVQ

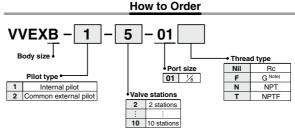
VY1

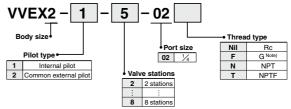
VBA

VBAT

Sub-plate/Base Gasket Part No.

Note) Not conforming to ISO1179-1.

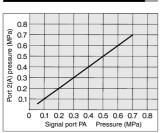

Manifold Specifications


Specifications

Applicable valve	VE	X1B33	VEX123 3			
Valve stations	2 to 10 st	tations Note)	2 to 8 stations Note)			
Air passage		Common supply/exhaust				
Pilot	Internal pilot	Internal pilot Common external pilot		Common external pilot		
Pilot port size		— M5 x 0.8		M5 x 0.8		
Port size Port 1(P), 2(A), 3(R)		1/8	1/4			
Blanking plate	VEXB (With gasket ar mounting bo	nd 🕇	VEX1-17 (With gasket a	nd mounting bolt)		

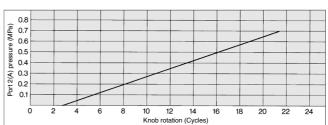
Note) Pressurize to Port 1(P) and exhaust from Port 3(R) on the both sides for six stations or more of "VEX1B33" and/or five stations or more of "VEX1233".

List symbols in the order of precision regulators and blanking plates for manifolds from the left-hand side (Port 2(A) faces this side) of the manifold base.


Ex.) VVEX2-2-5-02

* VEX1233-G

* VEX1-17 -


Note) Not conforming to ISO1179-1.

Set Pressure Characteristics (Air Operated Type)

Set Pressure Characteristics (Manual Knob Type)

SMC

ARJ AR425

ARX

AMR

ARM

ARP

IR□-A IR

IRV

VEX

SRH

SRP

SRF

ITV IC

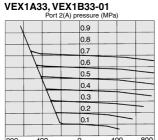
ITVH

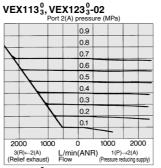
ITVX

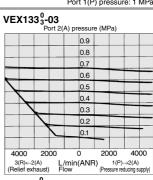
PVQ

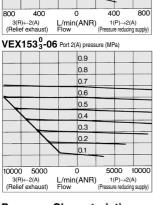
VY1

VBA VBAT

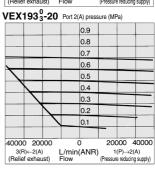

AP100

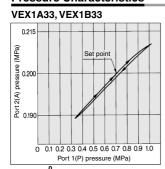

845

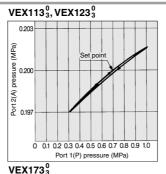

VEX1□3⁰ Series

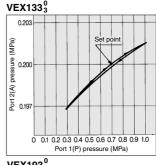

Flow Rate Characteristics

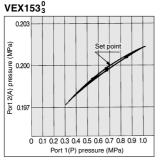
Port 1(P) pressure: 1 MPa

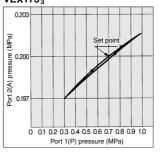


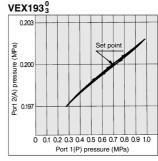


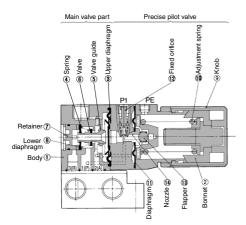





Pressure Characteristics


Port 1(P) pressure: 0.7 MPa, Port 2(A) pressure: 0.2 MPa, Flow: 0 L/min (ANR)



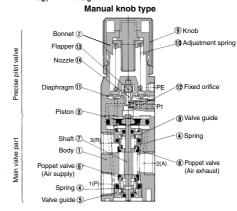


Construction/Working Principle

VEX1A33, VEX1B33

When set-knob ③ is turned clockwise, the force generated by set spring ⑩ causes flapper ③ to close nozzle ﴿, allowing the nozzle back pressure to be applied to the right surface of top diaphragm ③. Then, valve ⑥ moves to the left, allowing the supply air to flow from port 1(P) to port 2(A). The air pressure that has flowed in is applied to the left surface of tod diaphragm ③ and counteracts the force generated by the nozzle back pressure; at the same time, it is applied to the left surface of diaphragm ⑥, and balances with the set pressure that counteracts the compression force of set spring ⑩.

When the outlet pressure increases higher than the set pressure, it pushes diaphragm ① towards the right, and the pressure at the right side of top diaphragm ③ decreases, causing top diaphragm ③ to move to the right. Then, valve ⑧ moves away from the left surface of top diaphragm ③ the outlet pressure flows from port 2(A) via the valve hollow and is discharged through port 3(R) (atmosphere). If set knob ⑨ is turned conterclockwise, the movement will be the opposite, the outlet pressure will decrease, and will balance with a newly set pressure.


Component Parts

00	compension rante					
No.	Description	Material				
1	Body	Zinc alloy die-casted				
2	Bonnet	Aluminum alloy die-casted				
3	Upper diaphragm	NBR/FKM				
4	Spring	Stainless steel				
5	Valve guide	Stainless steel				
6	Valve	NBR/FKM				
7	Retainer	Resin				
8	Lower diaphragm	NBR/FKM				

Replacement Parts

riopiacoment i arte							
No.	Description	Part no.					
9	Knob	VBA1-10#1					

$\begin{array}{c} {\sf VEX113}_3^0, {\sf VEX123}_3^0, {\sf VEX133}_3^0, {\sf VEX153}_3^0 \\ {\sf VEX173}_3^0, {\sf VEX193}_3^0 \end{array}$

Air operated type Zero adjusting Screw (6) Diaphragm (1) Flapper (3) Nozzle (4) Diaphragm (1) PE

P(1) port pressure Feedback pressure nen set-knob (9) is turned clockwise, the force of

When set-knob ③ is turned clockwise, the force generated by set spring <code>@</code> causes flapper <code>③</code> to close nozzle <code>@</code>, allowing the nozzle back pressure be applied to the top of piston ③. Then, via shaft ⑦, poppet valve (supply air) ⑥ opens, allowing the supply air to flow from port <code>1(P)</code> to port <code>2(A)</code>. The air pressure that has flowed in is applied to the bottom surface of piston ③ and counteracts the force generated by the nozzle back pressure; at the same time, it is applied to the bottom surface of diaphragm ①, and balances with the set pressure that conteracts the compression force of set spring ⑩. When the outlet pressure increases higher than the set pressure, it pushes the diaphragm ⑪ upward, the pressure at the top surface of piston ③

(§) via shaft (?), and is discharged through port 3(R) to the atmosphere. If set-knob (§) is turned counterclockwise (if the set pressure of the pressure-reducing valve connected to the signal port is decreased), the movement will be the opposite; the outlet pressure will decrease and balance with a newly set pressure.

decreases, causes piston 3 to move upward, opens poppet valve (exhaust)

Note) Those indicated in parentheses are for the air operated type.

Component Parts

Component Parts						
No.	Description	Material				
1	Body	Aluminum alloy die-casted				
2	Bonnet	Aluminum alloy die-casted				
3	Regulating piston	Aluminum alloy				
4	Spring	Stainless steel				
5	Valve guide	Aluminum alloy				
6	Poppet valve	NBR				
7	Shaft	Stainless steel				
8	Valve guide	Aluminum alloy				

Replacement Parts

riopiacomonit i arto						
No.	Description	Part no.				
9	Knob	VBA1-10#1				

ARJ

AR425

to 935

ARX

AMR

ARM

ARP

IR□-A

IR

IRV

SRH

SRP

SRF

ITV

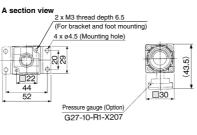
IC

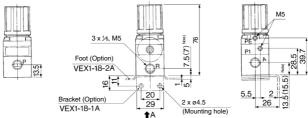
ITVH

ITVX

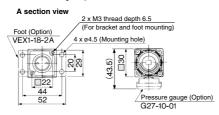
PVQ

VY1


VBA


VBAT

Body Ported

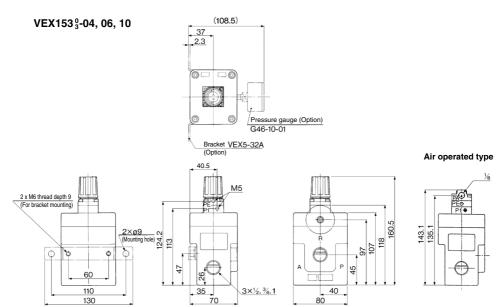

VEX1A33-M5, 01

Note) () are the dimensions of "M5".

VEX113⁰₃-01, 02

Air operated type




Power Valve/Precision Regulator $VEX1 \square 3^0_3$ Series

Body Ported

VEX1339-02, 03, 04

ARJ

AR425 to 935

AMR

ARM

IR□-A

IR IRV

VEX

SRH

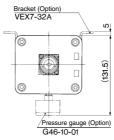
SRF

ITV

IC ITVH

ITVX

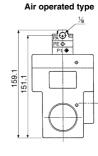
PVQ


VY1 VBA VBAT

VEX1□3⁰ Series

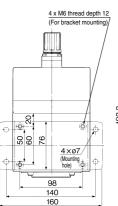
Body Ported

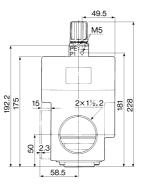
VEX173⁰₃-10, 12

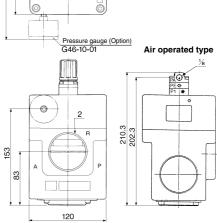


39.5 M5 2×ø9 (Mounting 176.5 hole) 4 x M6 thread depth 6 140.2 129 123 (For bracket mounting) (O) φ. (4) 49 8 2×1,11/4 30 15 82 60 120

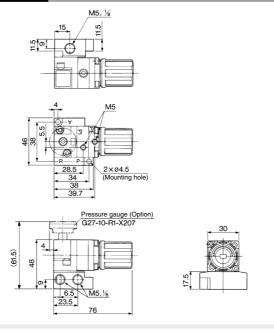
F 11/4 P 150


Bracket (Option) VEX9-32A

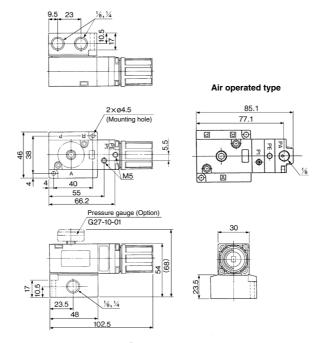

(152.5)



136


0

Power Valve/Precision Regulator $VEX1 \square 3^{\it 0}_{\it 3}$ Series



Base Mounted

VEX1B33-M5, 01

VEX123 0-01, 02

ARJ AR425 to 935

ARX

AMR

ARP

IR□-A

IR IRV

VEX

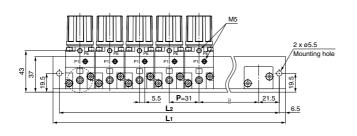
SRH

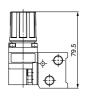
SRP

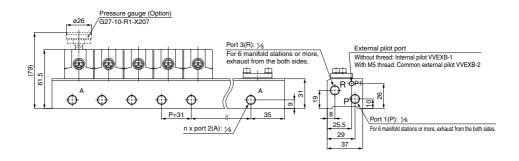
SRF

ITV

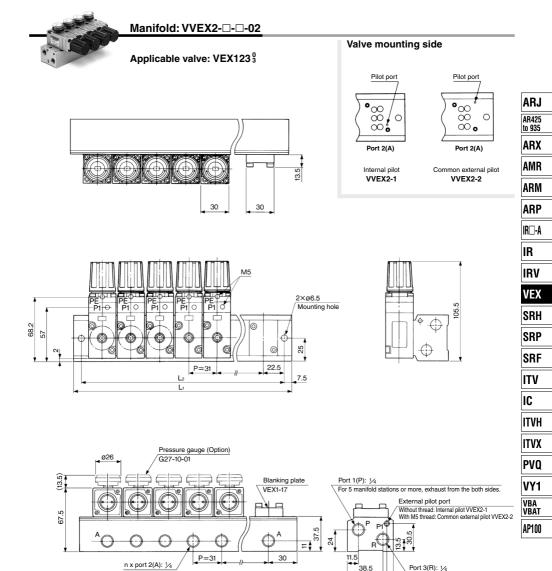

IC ITVH


ITVX


PVQ


VY1

VBA VBAT



L Dime	nsion				$L_1 = 31n + 25$, $L_2 = 31n + 12$ n: Station					
Symbol n	2	3	4	5	6	7	8	9	10	
L ₁	87	118	149	180	211	242	273	304	335	
L2	74	105	136	167	198	229	260	291	322	

Power Valve/Precision Regulator $VEX1\square 3^0_3$ Series

L Dime	ension	$L_1 = 31n + 29$, $L_2 = 31n + 14$ n: Station						
Symbol n	2	3	4	5	6	7	8	
L ₁	91	122	153	184	215	246	277	
L2	76	107	138	169	200	231	262	

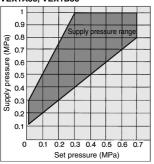
42.5

50

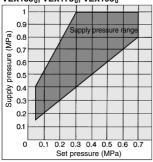
For 5 manifold stations or

more, exhaust from the both sides.

↑ Precautions


Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 387 to 391 for Precautions on every series.

Operating Fluid



- 1. If drainage or debris is present in the supply pressure line, the fixed orifice becomes clogged, resulting in a malfunction. Therefore, in addition to the air filter (SMC's AF series), make sure to use a mist separator (SMC's AM, AFM series). Concerning the quality of the operating air, refer to SMC's the air preparation equipment selection guide (pages 2 and 3).
- 2. Make sure to perform a maintenance periodically on air filter and mist separator (by discharging the drain and cleaning a filter element or replacing with new one).
- Never use a lubricator on the supply side with the internal pilot remaining in place, doing so will cause the fixed orifice to become clogged, invariably leading to a malfunction
- 4. When lubrication to terminal device is required: Connect a lubricator on the supply [port 1(P)] side using the external pilot type. Use mist separator passage on the pilot air [port P1] side.
- 5. Use a supply pressure in the recommended range (the range indicated in the diagram

VEX1A33, VEX1B33

VEX1133, VEX1233, VEX133 VEX1533, VEX1733, VEX1933

Piping

⚠ Warning

- 1. Use the flow rate characteristics on page 846 as reference to select a regulator size so that the required flow rates on the reduced pressure supply and relief exhaust sides have sufficient allowances
 - If the reduced pressure supply and relief exhaust that may cause extreme changes in flow rate are repeated (main valve is fully opened and closed repeatedly), the nozzle flapper is deformed. This may cause the pressure set value to deviate or the diaphragm to break early. So, do not use under such conditions.

- 1. Tightening the fittings and their torque When screwing fittings into the valve, make sure to tighten them to the proper torque values given below.
- Connection thread: M5
- First, tighten by hand, then use a wrench appropriate for the hexagon flats of the body to tighten an additional 1/6 to 1/4 turn. A reference value for the tightening torque is
- 1 to 1.5 N·m. · Use the fitting with sealant as the Uni
- One-touch fitting cannot be used.

 For the fitting with sealant R or NPT, first, tighten it by hand, then use a wrench appropriate for the hexagon flats of the body to tighten it a further two or three turns. For a tightening torque guide, refer to the table

Connection thread size (R, NPT)	Proper tightening torque (N·m)
1/8	3 to 5
1/4	8 to 12
3/8	15 to 20
1/2	20 to 25
3/4	28 to 30
1	36 to 38
1 1/4	40 to 42
1 1/2	48 to 50
2	48 to 50

2. Ordinarily, air is discharged from the bleed port (PE). The consumption of air through this discharge is normal, owing to the construction of the precision pressure regulator.

Regulator for Signals (Air operated type only) **⚠** Caution

- Applicable model Regulator IR2000 series
- VEX1^A_B 33 series

 In the case of multiple pressure control, consider using ITV series or the E-P HYREG® VY series, which can simplify your system.

Zero Adjustment Screw **⚠** Caution

• The zero adjustment screw has been adjusted at the time of shipment to set the signal pressure and the output pressure as close to 1:1 as possible. Thus, it is not necessary to adjust it for operational purposes.

Vibration

Vibration is likely to occur under the following conditions.

- 1. Supply pressure is relatively high (approx. 0.5 MPa or higher), set pressure is low (approx. 0.1 MPa or lower) and the outlet side is open to the atmosphere
- 2. Capacity of the precision regulator outlet side is extremely small.

The following measures can be taken.

- a. Set the supply pressure extremely low (+0.1 MPa or more of the set pressure).
- b. Make the capacity of the precision regulator outlet side larger.
- c.Install an exhaust throttle valve with a silencer (ASN2-M5) on the bleed port (PE). Vibration can be avoided by adjusting the exhaust throttle. However, if the bleed is throttled too much, sensitivity may be reduced, resulting in poor performance. Be sure not to apply excessive throttle.

Related Products:

Silencer (AN series)

- Noise reduction capability of over 30 dB.
- Provides a sufficient effective area.

For details, refer to Best Pneumatics No. 7.

Exhaust cleaner (AMC series)

- Provides noise reduction and oil mist recovery functions.
- Can also be used in an intensive piping system.
- Oil mist removal of 99.9%
- Noise reduction of over 35 dB.

For details, refer to Best Pneumatics No. 7.