Round Type Hydraulic Cylinder

CHM Series

Round Type Hydraulic Cylinder СНロM Series ø20, ø25, ø32, ø40

How to Order

Applicable Auto Switches/Refer to pages 431 to 490 for further details on each auto switch.

[^0]* Since there are applicable auto switches other than listed, refer to page 326 for details.
* For details about auto switches with pre-wired connector, refer to pages 474 and 475.
* D-A9 \square, M9 \square, M9 \square W, M9 \square A are shipped together (but not assembled). (Only auto switch mounting brackets are assembled at the time of shipment.)

Specifications

Bore size (mm)	20	25	32	40
Action	Double acting/Single rod			
Fluid	Hydraulic fluid			
Nominal pressure	3.5 MPa			
Proof pressure	5.0 MPa			
Maximum allowable pressure	3.5 MPa			
Minimum operating pressure	0.3 MPa			
Ambient and fluid temperature	Without auto switch: -10° to $80^{\circ} \mathrm{C}$			
	With auto switch: -10° to $60^{\circ} \mathrm{C}$			
Piston speed	8 to $300 \mathrm{~mm} / \mathrm{s}$			
Cushion	None			
Stroke length tolerance	$\begin{array}{ll}\text { to } 250 \mathrm{~mm} \\ 250 \text { to } 800 \mathrm{~mm} & \begin{array}{c}+1.0 \\ 0 \\ +1.4 \\ 0\end{array}\end{array}$			
Mounting type	Basic type, Axial foot type Head flange type, Rod flange type Single clevis type			

Note) Refer to page 214 for definitions of terms related to pressure.

Accessories

Mounting bracket		Basic type	Axial foot type	Head flange type	Rod flange type	Single clevis type
	Mounting nut	(2 pcs.)	(2 pcs.)	(1 pc.)	(1 pc.)	-
	Rod end nut	-	\bigcirc	-	\bigcirc	-

Optional

I-type single knuckle joint	
Y-type double knuckle joint	Refer to page 323
Bracket for clevis type	
Knuckle pin	
Bracket pin	

Hydraulic Fluid Compatibility

Hydraulic fluid	Compatibility
Standard mineral hydraulic fluid	Compatible
W/O hydraulic fluid	Compatible
O/W hydraulic fluid	Compatible
Water/Glycol hydraulic fluid	Not compatible
Phosphate hydraulic fluid	Not compatible

Standard Strokes: Refer to page 325 regarding minimum strokes for auto switch mounting.

Bore size (mm)	Standard strokes (mm)
20	25 to 800
25	
32	
40	

* Orders of the standard strokes above can be supplied with a minimum lead time.

Please consult with SMC regarding the manufacture of strokes other than the above.

Mounting Brackets: Part Nos.

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Axial foot*	CHM-L020	CHM-LO25	CHM-L032	CHM-LO40
Flange	CHM-F020	CHM-F025	CHM-F032	CHM-F040

[^1]
Theoretical Output

Unit: N									
$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Rod size (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)					
				1	1.5	2	2.5	3	3.5
20	10	OUT	314	314	471	628	785	942	1099
		IN	235	235	352	470	587	705	822
25	12	OUT	490	490	735	980	1225	1470	1715
		IN	377	377	565	754	942	1131	1319
32	16	OUT	804	804	1206	1608	2010	2412	2814
		IN	603	603	904	1206	1507	1809	2110
40	18	OUT	1256	1256	1884	2512	3140	3768	4396
		IN	1002	1002	1503	2004	2505	3006	3507

Theoretical output $(\mathrm{N})=$ Pressure $(\mathrm{MPa}) \times$ Piston area $\left(\mathrm{mm}^{2}\right)$

Weight

					Unit: kg	
Bore size (mm)		20	25	32	40	- Calculation method (Example) CHML20-100 (Foot type ø20/100 mm stroke)
	Basic type	0.20	0.29	0.50	0.82	
	Axial foot type	0.44	0.55	0.88	1.36	- Basic weight $-\ldots0 .44 \mathrm{~kg}$ - Additional weight...0.06/50 mm - Cylinder stroke $\cdots \cdots . .100 \mathrm{~mm}$ $0.44+0.06 \times 100 / 50=0.56 \mathrm{~kg}$
	Flange type	0.29	0.46	0.69	1.03	
	Clevis type	0.18	0.37	0.64	0.77	
	ditional weight per 50 mm	0.06	0.08	0.12	0.16	

Be sure to read this before I handling the products.
1 Refer to back page 50 for Safety 1 Instructions and pages 214 to 221 for Hydraulic Cylinder and I Auto Switch Precautions.

Air Release

\triangle Caution

1. Since $\mathrm{CH} \square \mathrm{M}$ series does not have an air release valve, release air from components other than the cylinder (e.g. from piping, etc.).
2. When operating a cylinder for the first time, be sure to release the air at low pressure. When the air release is complete, operate the cylinder at reduced pressure, then gradually increase it to the normal operating pressure. However, the piston speed at this time should be adjusted to the minimum speed.

Mounting

\triangle Caution

1. When mounting with bracket mounting nuts, tighten them using the tightening torques in the table below as a guide.

Bore size (mm)	Mounting nut thread	Mounting nut width across flats (mm)	Tightening torque $(\mathrm{N} \cdot \mathrm{m})$
$\mathbf{2 0}$	$\mathrm{M} 22 \times 1.5$	26	45
$\mathbf{2 5}$	$\mathrm{M} 24 \times 1.5$	32	60
$\mathbf{3 2}$	M30 $\times 1.5$	38	85
$\mathbf{4 0}$	M33 $\times 1.5$	41	110

2. When mounted with one side attached and one side free (basic type, flange type) and operating at high speed, the bending moment acts on the cylinder due to oscillation at the stroke end, which may cause cylinder damage. In this type of situation, install brackets to suppress the oscillation of the cylinder body, or reduce the piston speed enough so that the cylinder body does not oscillate at the stroke end.

Parts List

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Hard black anodized
2	Head cover	Aluminum alloy	Hard black anodized
3	Cylinder tube	Aluminum alloy	Hard anodized
4	Piston rod	Carbon steel	Hard chromium electroplated*
5	Piston	Aluminum alloy	Chromated
6	Bushing	Oil impregnated alloy	
7	Wear ring	Resin	
8	Retainer	Copper alloy	
9	Rod seal	NBR	
10	Wiper ring	NBR	
11	Piston seal	NBR	
12	Piston gasket	NBR	
13	Tube gasket	Carbon steel	Black zinc chromated
14	Mounting nut	Rolled steel	Nickel plated
15	Rod end nut		

* In case of cylinder bore sizes ø20 and ø25 for built-in magnet type, the piston rod material is stainless steel when equipped with auto switches.

$C H \square M$ Series

Dimensions

Basic type: CHMB

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Stroke range (mm)	Effective thread length (mm)	A	B1	B_{2}	D	F	GA	GB	H	H_{1}	H_{2}	1	$\begin{gathered} \text { IA } \\ \text { (tolerance) } \end{gathered}$	K	MM	P	S	NN	N	NA	NB	NC	ZZ
20	Up to 800	15.5	18	13	26	10	16	12	8	41	5	8	30	23 f8 $8_{-0.053}^{-0.020}$	5	M8 $\times 1.25$	1/8	81	M 22×1.5	13	26	19	15	138
25	Up to 800	19.5	22	17	32	12	16	12	8	46	6	8	32	$25 f 88_{-0.053}^{-0.020}$	5.5	M10 $\times 1.25$	1/8	81	M 24×1.5	13	28	19	15	143
32	Up to 800	21	24	22	38	16	19	12	8	53	8	9	40	31 f8 $8_{-0.064}^{-0.025}$	7.5	M14 $\times 1.5$	1/8	87	M 30×1.5	13	36	19	15	159
40	Up to 800	21	24	24	41	18	21	14	11	54	10	11	48	34 f8 $8_{-0.064}^{-0.025}$	7.5	M16 $\times 1.5$	1/4	108	M 33×2	19	44	24	21	183

Axial foot type: CHML

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Stroke range (mm)	Effective thread length (mm)	A	B1	B2	D	F	GA	GB	H	H_{1}	H_{2}	I	K	LD	LH	LS	LT	LX	LZ	MM	N	NA	NB	NC
20	Up to 800	15.5	18	13	26	10	16	12	8	41	5	8	30	5	7	25	121	5.5	40	55	M8 x 1.25	13	26	19	15
25	Up to 800	19.5	22	17	32	12	16	12	8	46	6	8	32	5.5	7	28	121	5.5	40	55	M10 $\times 1.25$	13	28	19	15
32	Up to 800	21	24	22	38	16	19	12	8	53	8	9	40	7.5	7	30	133	6	45	60	M14 $\times 1.5$	13	36	19	15
40	Up to 800	21	24	24	41	18	21	14	11	54	10	11	48	7.5	9	35	158	6	55	75	M16 $\times 1.5$	19	44	24	21
(mm)																									

Bore size (mm)	$\mathbf{N N}$	\mathbf{P}	\mathbf{S}	\mathbf{X}	\mathbf{Y}	$\mathbf{Z Z}$
$\mathbf{2 0}$	$\mathrm{M} 22 \times 1.5$	$1 / 8$	81	20	9	151
$\mathbf{2 5}$	$\mathrm{M} 24 \times 1.5$	$1 / 8$	81	20	9	156
$\mathbf{3 2}$	$\mathrm{M} 30 \times 1.5$	$1 / 8$	87	23	9	172
$\mathbf{4 0}$	$\mathrm{M} 33 \times 2$	$1 / 4$	108	25	11	198

Rod flange type: CHMF

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Stroke	$\begin{aligned} & \text { range } \\ & \mathrm{m}) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Effective } \\ \text { thread length } \\ (\mathrm{mm}) \end{array}$	A	B	B1	B2	D	F	FD	FT	FX	FY	FZ	GA	GB	H	H_{1}	H_{2}	I	$\underset{\text { (tolerance) }}{\text { IA }}$	K	MM	N	NA
20	Up to	800	15.5	18	38	13	26	10	16	7	6	51	21	68	12	8	41	5	8	30	23 f8 $8_{-0.053}^{-0.020}$	5	M8 x 1.25	13	26
25	Up to	800	19.5	22	44	17	32	12	16	7	9	53	27	70	12	8	46	6	8	32	$25 f 8{ }_{-0.053}^{-0.020}$	5.5	M10 1.25	13	28
32	Up to	800	21	24	50	22	38	16	19	7	9	55	33	72	12	8	53	8	9	40	31 f8 ${ }_{-0.0064}^{-0.025}$	7.5	M14 $\times 1.5$	13	36
40	Up to	800	21	24	60	24	41	18	21	9	9	66	36	84	14	11	54	10	11	48	$34 ¢ 8{ }_{-0.064}^{-0.025}$	7.5	M16 $\times 1.5$	19	44
(mm)																									
$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	NB	NC	NN	P	S	ZZ																			
20	19	15	M 22×1.5	1/8	81	138																			
25	19	15	M 24×1.5	1/8	81	143																			
32	19	15	M 30×1.5	1/8	87	159																			
40	24	21	M 33×2	1/4	108	183																			

$C H \square M$ Series

Dimensions

Head flange type: CHMG

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Stroke range (mm)	Effective thread length (mm)	A	B	B1	B2	D	F	FD	FT	FX	FY	FZ	GA	GB	H	H_{1}	H_{2}	1	$\begin{array}{\|c\|} \text { IA } \\ \text { (tolerance) } \end{array}$	K	MM	N	NA
20	Up to 800	15.5	18	38	13	26	10	16	7	6	51	21	68	12	8	41	5	8	30	23 f8 $8_{-0.053}^{-0.020}$	5	M8 x 1.25	13	26
25	Up to 800	19.5	22	44	17	32	12	16	7	9	53	27	70	12	8	46	6	8	32	$25 f 8{ }_{-0.053}^{-0.020}$	5.5	M10 1.25	13	28
32	Up to 800	21	24	50	22	38	16	19	7	9	55	33	72	12	8	53	8	9	40	31 f8 ${ }_{-0.0064}^{-0.025}$	7.5	M14 $\times 1.5$	13	36
40	Up to 800	21	24	60	24	41	18	21	9	9	66	36	84	14	11	54	10	11	48	$348^{-0.0064}$	7.5	M16 $\times 1.5$	19	44
(mm)																								

Bore size (mm)	NB	NC	NN	\mathbf{P}	\mathbf{S}	$\mathbf{Z Z}$
$\mathbf{2 0}$	19	15	M 22×1.5	$1 / 8$	81	138
$\mathbf{2 5}$	19	15	M 24×1.5	$1 / 8$	81	143
$\mathbf{3 2}$	19	15	M 30×1.5	$1 / 8$	87	159
$\mathbf{4 0}$	24	21	M 33×2	$1 / 4$	108	183

Single clevis type: CHMC

Bore size (mm)	Stroke range (mm)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Effective } \\ \text { thread length } \\ (\mathrm{mm}) \end{array} \\ \hline \end{array}$	A	B1	CD	CX	D	F	GA	GB	H	H_{1}	1	$\left\lvert\, \begin{gathered} \text { IA } \\ \text { (tolerance) } \end{gathered}\right.$	K	MM	N	NA	NB	NC	NN	P	RR	S	U	Z	ZZ
20	Up to 800	15.5	18	13	10	16	10	16	12	8	41	5	30	23 f8 ${ }_{-0.053}^{-0.020}$	5	M8 $\times 1.25$	13	26	19	15	M 22×1.5	1/8	13.5	81	14	136	149.5
25	Up to 800	19.5	22	17	10	16	12	16	12	8	46	6	32	$25 ¢^{\text {f }}{ }_{-0.0053}^{-0.020}$	5.5	M10 1.25	13	28	19	15	M 24×1.5	1/8	14.5	81	15	142	156.5
32	Up to 800	21	24	22	12	16	16	19	12	8	53	8	40	31 f8 ${ }_{-0.064}^{-0.025}$	7.5	M14 $\times 1.5$	13	36	19	15	M 30×1.5	1/8	18.5	87	20	160	178.5
40	Up to 800	21	24	24	12	24	18	21	14	11	54	10	48	34 f8 ${ }_{-0.064}^{-0.025}$	7.5	M16 $\times 1.5$	19	44	24	21	M33 $\times 2$	1/4	22.5	108	20	182	204.5

Accessories (Standard)

Rod end nut

		d		0 Mate	: Carb	steel
Part no.	Applicable bore size (mm)	d	H	B	C	D
NT-02	20	M8 x 1.25	5	13	15.0	12.5
NT-03	25	M10 1.25	6	17	19.6	16.5
NT-04	32	M14 $\times 1.5$	8	22	25.4	21.0
AC-NI-50	40	M16 $\times 1.5$	10	24	27.7	23

Accessory Brackets (Optional)

l-type single knuckle joint
ø25: l-032B

ø32: I-04A

Material: Rolled steel							Material: Cast iron		
Part no.	Applicable bore size (mm)	A1	E1	L1	MM	R1	U_{1}	ND ${ }^{\text {H10 }}$	NX
I-020B	20	16	20	36	M8 $\times 1.25$	10	14	$9^{+0.058}$	$9_{-0.2}^{-0.1}$
I-032B	25	18	20	38	M10 $\times 1.25$	10	14	$9^{+0.058}$	$9_{-0.2}^{-0.1}$
I-04A	32	22	24	55	M14 $\times 1.5$	15.5	20	$12^{+0.070}$	$16_{-0.3}^{-0.1}$
IA-04	40	22	24	55	M16 $\times 1.5$	15.5	20	$12^{+0.070}$	$16_{-0.3}^{-0.1}$

Y-type double knuckle joint

Mounting nut

Bracket pin

Material: Carbon steel

Part no.	Applicable bore size (mm)	A	B	C (f8)		D	Note
				Size	Tolerance		
AD-El-20	20	45.5	35.5	10	- ${ }^{-0.013}$	3.2	$\begin{aligned} & \text { Cotter pin } \\ & 03.2 \times 15 \ell(2 \text { pcs. }) \end{aligned}$
AD-El-25	25	45.5	35.5	10	-	3.2	
AD-El-32	32	52	42	12	-0.016	4	Cotter pin 04×20 (2 pcs.)
AD-EI-40	40	60	50	12	-	4	

Clevis pin \& Knuckle pin

CH $\square M$ Series
 Auto Switch Mounting
 Refer to pages 431 to 490 for detailed specifications.

Auto Switches: Proper Mounting Positions and Mounting Heights for Stroke End Detection

(mm)

Auto Switch Proper Mounting Positions

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Solid state auto switch								Reed auto switch									
	$\begin{aligned} & \text { D-M9 } \square(V) \\ & \text { D-M9 } \square \mathbf{W}(V) \\ & \text { D-M9 } \square \mathbf{A}(V) \end{aligned}$		D-H7 \square D-H7口W/H7C D-H7NF/H7BA		$\begin{array}{\|l} \hline \text { D-G5 } \square / K 59 \\ \text { D-G5 } \square W / K 59 W \\ \text { D-G59F/G5BA } \\ \text { D-G5NT } \end{array}$		D-G39/K39		D-A9 \square (V)		$\begin{aligned} & \text { D-C7 } \square / C 80 \\ & \text { D-C73C/C80C } \end{aligned}$		D-B5 $\square / B 64$		D-B59W		D-A3■/A44	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
20	18	17	13.5	12.5	10	9	8	7	14	13	14.5	13.5	8.5	7.5	11.5	10.5	8	7
25	16	19	11.5	14.5	8	11	6	9	12	15	12.5	15.5	6.5	9.5	9.5	12.5	6	9
32	23	18	18.5	13.5	15	10	13	8	19	14	19.5	14.5	13.5	8.5	16	11.5	13	8
40	27.5	23.5	23	19	19.5	15.5	17.5	13.5	23.5	19.5	24	20	18	14	21	17	17.5	13.5

Note) When setting an auto switch, be sure to check its operation before adjusting.
Auto Switch Mounting Heights

Bore size (mm)	$\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-M9 } \square \mathrm{A}(\mathrm{~V}) \\ & \mathrm{D}-\mathrm{A9} \square(\mathrm{~V}) \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { D-H7 } \square / H 7 \square W \\ & \text { D-H7NF/H7BA } \\ & \text { D-C7 } \square / C 80 \end{aligned}\right.$	D-C73C/C80C	D-G5 $\square / K 59$ D-G5 W/K59W D-G59F/G5BA D-G5NT/H7C D-B5 D-B6/B64	$\begin{aligned} & \text { D-G39/K39 } \\ & \text { D-A3 } \end{aligned}$	D-A44
	Hs	Hs	Hs	Hs	Hs	Hs
20	26	25.5	27	27.5	62	72
25	28.5	28	29.5	30	64.5	74.5
32	32	31.5	33	33.5	68	78
40	36.5	36	37.5	38	72.5	82.5

Minimum Auto Switch Mounting Stroke

Auto switch model	Auto switches－ 2 pcs．	
	Different surfaces	Same surface
	Correct auto switch mounting position is 3.5 mm from the back face of the switch holder．	Mount auto switches offset（in circumferential direction of cylinder tube）so that auto switch units and lead wires do not run up against each other．
$\begin{aligned} & \text { D-M9■ } \\ & \text { D-M9 } \end{aligned}$	Less than 20 stroke ${ }^{\text {Note 2）}}$	Less than 55 stroke ${ }^{\text {Note 2）}}$
D－M9 \square A	Less than 25 stroke ${ }^{\text {Note 2）}}$	Less than 60 stroke ${ }^{\text {Note 2）}}$
D－A9 \square	－	Less than 50 stroke ${ }^{\text {Note 2）}}$

Note 2）Minimum stroke for auto switch mounting in types other than those mentioned in Note 1.

Operating Range

Auto switch model	Bore size			
	20	25	32	40
$\begin{aligned} & \text { D-M9 } \square(V) \\ & \text { D-M9 } \mathrm{W}(\mathrm{~V}) \\ & \text { D-M9 } \end{aligned}$	4.5	6.5	4.5	6.5
$\begin{aligned} & \text { D-H7口/H7C } \\ & \text { D-H7口W } \\ & \text { D-H7NF/H7BA } \end{aligned}$	4.5	5.5	5	5.5
D－G5口／K59／G59F D－G5 \square W／K59W D－G5BA／G5NT	5	5	5	5.5

Auto switch model	Bore size			
	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
D－G39／K39	9	8.5	10	10.5
D－A9 $\square \mathbf{V})$	7	6	8	8
D－C7 $\square / \mathbf{C 8 0}$	8	10	9	10
D－C73C／C80C	8	10	9	10
D－B5 \square／B64	13	13	14	14
D－B59W	9	10	10	11
D－A3 $\square /$ A44				

＊Since this is a guideline including hysteresis，not meant to be guaranteed．（Assuming approximately $\pm 30 \%$ dispersion．） There may be the case it will vary substantially depending on an ambient environment．

Auto Switch Mounting Brackets: Part Nos.

Auto switch model	Bore size (mm)			
	$\varnothing 20$	$\varnothing 25$	$\varnothing 32$	$\varnothing 40$
$\begin{aligned} & \text { D-A9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathbf{W}(\mathrm{V}) \end{aligned}$	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-020 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-025 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-032 } \end{gathered}$	$\begin{aligned} & \text { Note 1) } \\ & \text { BMA3-040 } \end{aligned}$
D-M9 $\square \mathrm{A}$ (V)	$\begin{gathered} \text { Note 2) } \\ \text { BMA3-020S } \\ \hline \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BMA3-025S } \\ \hline \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BMA3-032S } \\ \hline \end{gathered}$	$\begin{gathered} \text { Note 2) } \\ \text { BMA3-040S } \\ \hline \end{gathered}$
D-H7口 D-H7■W D-H7NF D-H7BA D-C7口/C80 D-C73C/C80C	BMA2-020A	BMA2-025A	BMA2-032A	BMA2-040A
$\begin{aligned} & \text { D-G5ם/G5 W } \\ & \text { D-G59F } \\ & \text { D-G5BA/G5NT } \\ & \text { D-B5■/B64 } \\ & \text { D-B59W } \end{aligned}$	BA-01	BA-02	BA-32	BA-04
$\begin{aligned} & \text { D-G39/K39 } \\ & \text { D-A3 } \square / \text { A44 } \\ & \hline \end{aligned}$	BD1-01M	BD1-02M	BD1-02	BD1-04M

Note 1) Set part number which includes the auto switch mounting band (BMA2-वपดA) and the holder kit (BJ5-1/Switch bracket: Transparent).
Since the switch bracket (made from nylon) are affected in an environment where alcohol, chloroform, methylamines, hydrochloric acid or sulfuric acid is splashed over, so it cannot be used. Please consult SMC regarding other chemicals.
Note 2) Set part number which includes the auto switch mounting band ,stainless steel screw and the holder kit (BJ4-1/Switch bracket: White).
Note 3) For the D-M9 $\square \mathrm{A}(\mathrm{V})$ type auto switch, do not install the switch bracket on the indicator light.

[Stainless steel mounting screw kits]

The following stainless steel mounting screw kits are available for use depending on the operating environment. (Switch mounting bands are not included and should be ordered separately.)
BBA3: D-G5, K5, B5, B6
BBA4: D-C7, C8, H7
Note) Refer to the table below for details on BBA3, BBA4 .
The above stainless steel screws are used when a cylinder is shipped with the D-G5BA auto switches. When only an auto switch is shipped independently, the BBA3 or BBA4 is attached.

Stainless mounting screw kit details

Part no.	Contents			Applicable auto switch mounting bracket part nos.	Applicable auto switches
	Description	Size	Pcs.		
BBA3	Auto switch mounting screws	M $4 \times 0.7 \times 22 \mathrm{~L}$	1	BA-01, BA-02, BA-32, BA-04, BA-05, BA-06, BA-08, BA-10	$\begin{aligned} & \text { D-B5, B6 } \\ & \text { D-G5, K5 } \end{aligned}$
				BA2-020, BA2-025, BA2-032, BA2-040	
				BA5-050, BHN2-025, BSG1-032	
				BH2-040, BH2-050, BH2-080, BH2-100	
				BAF-32, BAF-04, BAF-05, BAF-06, BAF-08, BAF-10	
BBA4		M $3 \times 0.5 \times 14 \mathrm{~L}$	1	BJ2-006, BJ2-010, BJ2-016	$\begin{aligned} & \text { D-C7, C8 } \\ & \text { D-H7 } \end{aligned}$
				BM2-020A, BM2-025A, BM2-032A, BM2-040A	
				BMA2-020A, BMA2-025A, BMA2-032A, BMA2-040A, BMA2-050A, BMA2-063A	
				BHN3-025A, BHN3-032A, BHN3-040A	

Besides the models listed in "How to Order," the following auto switches are applicable.
Refer to pages 431 to 490 for detailed auto switch specifications.

Auto switch type	Part no.	Electrical entry	Features
Solid state	D-H7A1, H7A2, H7B	Grommet (in-line)	-
	D-G59, G5P, K59		
	D-H7NW, H7PW, H7BW		Diagnostic indication (2-color indicator)
	D-G59W, G5PW, K59W		
	D-G5BA, H7BA		Water resistant (2-color indicator)
	D-G5NT		With timer
	D-G59F		Diagnostic output (2-color indicator)
Reed	D-C73, C76, B53	Grommet (in-line)	-
	D-C80		Without indicator light

* Solid state auto switches are also available with pre-wired connector. Refer to pages 474 and 475 for details.
* Normally closed (N.C. = b contact), solid state auto switches (D-F9G, F9H) are also available. For details, refer to page 443.

How to Mount and Move the Auto Switch

\triangle Caution

1. Tighten the screw under the specified torque when mounting auto switch.
2. Set the auto switch mounting band perpendicularly to cylinder tube.

Mounting correctly

Mounting incorrectly

When tightening the set screw supplied with the auto switch, use a watchmaker's screw driver with a handle diameter of 5 to 6 mm .

Adjustment the Auto Switch Position

(1) To make the fine adjustment, loosen the set screw (M2.5) supplied with the auto switch and slide the auto switch inside the auto switch mouthing groove to adjust the position.
(2) To move the auto switch setting position largely, loosen the screw (M3) that secures the auto switch mounting band and slide the auto switch together with the switch holder on the cylinder tube to adjust the position.

Figure 1. Switch insert angle
<Switch bracket>

Protrusion - Protrusion surface upward

Auto switch mounting screw

\section*{
 | 4 | \square |
| :--- | :--- |
| | \square |}

 faced downward.

\triangle Caution

1. Tighten the screw under the specified torque when mounting auto switch.
2. Set the auto switch mounting band perpendicularly to cylinder tube.

Mounting correctly

Mounting incorrectly

<Applicable auto switch>

Solid state D-G59, D-G5P, D-K59, D-G5BA D-G59W, D-G5PW, D-K59W D-G59F, D-G5NT, D-G5NB
Reed D-B53, D-B54, D-B64, D-B59W

1. Put an auto switch mounting band on the cylinder tube and set it at the auto switch mounting position.
2. Put the mounting section of the auto switch between the auto switch mounting band mounting holes, then adjust the position of mounting holes of switch to those of mounting band.
3. Lightly thread the auto switch mounting screw through the mounting hole into the thread part of band fitting.
4. After reconfirming the detection position, tighten the auto switch mounting screw to secure the auto switch while properly contacting the auto switch bottom part and the cylinder tube. (The tightening torque of M4 screw should be about 1 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.)
5. Modification of the detection position should be made in the condition of 3.

<Applicable auto switch>

Solid state D-H7A1, D-H7A2, D-H7B, D-H7BA D-H7C, D-H7NF, D-H7NW, D-H7PW, D-H7BW
Reed D-C73, D-C76, D-C80, D-C73C, D-C80C

1. Put an auto switch mounting band on the cylinder tube and set it at the auto switch mounting position.
2. Put the mounting section of the auto switch between the auto switch mounting band mounting holes, then adjust the position of mounting holes of switch to those of mounting band.
3. Lightly thread the auto switch mounting screw through the mounting hole into the thread part of the auto switch mounting band fitting.
4. After setting the whole body to the detecting position by sliding, tighten the auto switch mounting screw to secure the auto switch while properly contacting the auto switch bottom part and the cylinder tube. (Tightening torque of M3 screw should be 0.8 to $1 \mathrm{~N} \cdot \mathrm{~m}$.)
5. Modification of the detection position should be made in the condition of 3 .

How to Mount and Move the Auto Switch

\triangle Caution

1. Tighten the screw under the specified torque when mounting auto switch.
2. Set the auto switch mounting band perpendicularly to cylinder tube.

Mounting correctly

Mounting incorrectly
<Applicable auto switch>
Solid state D-G39, D-K39
Reed D-A33, D-A34, D-A44
How to Mount and Move the Auto Switch
D-A3, D-G3/K3 type

D-A4

1. Loosen the auto switch mounting screws at both sides to pull down the hook.
2. Put an auto switch mounting band on the cylinder tube and set it at the auto switch mounting position, and then hook the band.
3. Screw lightly the auto switch mounting screw.
4. Set the whole body to the detecting position by sliding, tighten the auto switch mounting screw to secure the auto switch. (The tightening torque should be about 2 to $3 \mathrm{~N} \cdot \mathrm{~m}$.)
5. Modification of the detecting position should be made in the condition of 3.

[^0]: *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.
 *2 1 m type lead wire is only applicable to D-A93.

 * Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW
 $1 \mathrm{~m} . .$. Nil (Example) M9NW * Solid state auto switches marked "O" are produced upon receipt of order
 $3 \mathrm{~m} \cdots \cdot . \mathrm{L} \quad$ (Example) M9NWL
 $5 \mathrm{~m} \cdots \ldots . \mathrm{Z}$ (Example) M9NWZ
 None N (Example) H7CN
 * Solid state auto switches marked " \bigcirc " are produced upon receipt of order.
 * Do not indicate lead wire length symbol N (none) for types D-A3 $\square, D-A 44, ~ D-G-39$ or D-K39.

[^1]: * When ordering the axial foot type, order 2 pcs. for each cylinder.

