ISO Cylinder Iso standard (15552)

C96 Series
ø32, $\varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$ RoHS

Lightweight 17% Weight reduced

* Compared with the previous C96 series ($\varnothing 40,100 \mathrm{~mm}$ stroke)

By adopting a new cushion method (Air cushion + Bumper cushion), Cycle time shortened

Previous	Air cushion
New	Air cushion
	+
	Bumper cushion

Bumper cushion reduces the metal noise that occurs when piston stops

New C96 Series

Weight reduced

Achieved weight reduction by changing rod cover shape and piston structure
[kg]

Bore size $[\mathrm{mm}]$	C96	Reduction rate
32	0.65	13%
40	0.96	17%
50	1.57	13%
63	1.94	14%
80	3.12	13%
100	4.03	12%

* Compared with the previous C96 series (ø40, 100 mm stroke)

Rod end nut can be screwed up to TRP.

Air cushion + Bumper cushion

Combined structure
-The cushion stroke time can now be reduced with the double cushioning, which improves the cycle time.
-The bumper cushion reduces the metal noise that occurs when the piston stops at the end of the stroke.

Rod end nut can be screwed up to TRP.	

Improved handling performance

Auto switch mounting and mounting position adjustment can be made in a one way direction.

Various mounting bracket options

Mounting brackets can be combined according to the operating conditions.

[^0]
ISO Standard (15552)

Air Cylinder: Standard Type Double Acting, Single/Double Rod C96 Series
$\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

Applicable Auto Switches/Refer to the Web Catalog or Best Pneumatics for further information on auto switches.

*1 Water-resistant type auto switches can be mounted on the above models, but SMC cannot guarantee water resistance.

* Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW
* Solid state auto switches marked with " \bigcirc " are produced upon receipt of order.
$1 \mathrm{~m}$. M (Example) M9NWM
$3 \mathrm{~m}$. L (Example) M9NWL
$5 \mathrm{~m} \mathrm{Z}$ (Example) M9NWZ
* Since there are other applicable auto switches than listed above, refer to page 185 for details.
* The D-A9 $\square /$ M9 $\square / M 9 \square W / M 9 \square A$ auto switches are shipped together, but not assembled. (Only the auto switch mounting brackets are assembled before shipment.)

Specifications

Refer to pages 181 to 185 for cylinders with auto switches.

- Auto Switch Proper Mounting Position (Detection at stroke end) and Mounting Height Minimum Stroke for Auto Switch Mounting Auto Switch Mounting Brackets/Part No. Operating Range

Bore size [mm]	32	40	50	63	80	100
Action	Double acting					
Fluid	Air					
Proof pressure	1.5 MPa					
Max. operating pressure	1.0 MPa					
Min. operating pressure	0.05 MPa					
Ambient and fluid temperature	Without auto switch: -20 to $70^{\circ} \mathrm{C}$ (No freezing) With auto switch: -10 to $60^{\circ} \mathrm{C}$ (No freezing)					
Lubrication	Not required (Non-lube)					
Operating piston speed	50 to $1000 \mathrm{~mm} / \mathrm{s}$					
Allowable stroke tolerance	Up to 500 stroke: ${ }_{0}^{+2}, 501$ to 1000 stroke: ${ }_{0}^{+2.4}$, 1001 to 1500 stroke: ${ }_{0}^{+2.8}, 1501$ to 2000 stroke: ${ }_{0}^{+3.2}$					
Cushion	Air cushion on both ends + Bumper cushion					
Port size	G 1/8	G 1/4	G 1/4	G 3/8	G 3/8	G 1/2
Mounting	Basic, Axial foot, Rod flange, Head flange, Single clevis, Double clevis, Center trunnion					

Standard Strokes

Bore size $[\mathrm{mm}]$	Standard stroke $[\mathrm{mm}]$	Max. stroke*1
$\mathbf{3 2}$	$25,50,80,100,125,160,200,250,320,400,500$	1000
$\mathbf{4 0}$	$25,50,80,100,125,160,200,250,320,400,500$	1900
$\mathbf{5 0}$	$25,50,80,100,125,160,200,250,320,400,500,600$	1900
$\mathbf{6 3}$	$25,50,80,100,125,160,200,250,320,400,500,600$	1900
$\mathbf{8 0}$	$25,50,80,100,125,160,200,250,320,400,500,600,700,800$	1900
$\mathbf{1 0 0}$	$25,50,80,100,125,160,200,250,320,400,500,600,700,800$	1900

Intermediate strokes are available.
*1 Please consult with SMC for longer strokes.

Accessories

Mounting		Basic	Foot	Rod flange	Head flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	\bigcirc						
	Clevis pin	-	-	-	-	-	\bigcirc	-
Option	Rod end	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Rod clevis	\bigcirc						
	Rod boot	O	\bigcirc	-	\bigcirc	O	-	\bigcirc

* Do not use a rod end (or floating joint) together with a single clevis with a ball joint (or clevis pivot bracket with a ball joint).
* Refer to pages 169 to 172 for dimensions and part numbers of the accessories.

\triangle Precautions

Theoretical Output

[N]

Bore size [mm]	Rod size [mm]	Operating direction	$\begin{array}{\|c} \text { Piston } \\ \text { area } \\ {\left[\mathrm{mm}^{2}\right]} \end{array}$	Operating pressure [MPa]								
				0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
32	12	OUT	804	161	241	322	402	482	563	643	724	804
		IN	691	138	207	276	346	415	484	553	622	691
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
		IN	1056	211	317	422	528	634	739	845	950	1056
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
		IN	1649	330	495	660	825	989	1154	1319	1484	1649
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
		IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
		IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
100	25	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7068	7854
		IN	7363	1473	2209	2945	3682	4418	5154	5890	6627	7363

* Theoretical output [N] = Pressure [MPa] x Piston area $\left[\mathrm{mm}^{2}\right]$

Weights

Bore size [mm]		32	40	50	63	80	100
Basic weight	Basic	0.43	0.64	1.09	1.42	2.32	3.15
	Foot	0.16	0.20	0.38	0.46	0.89	1.09
	Flange	0.20	0.23	0.47	0.58	1.30	1.81
	Single clevis	0.16	0.23	0.37	0.60	1.07	1.73
	Double clevis	0.20	0.32	0.45	0.71	1.28	2.11
	Trunnion	0.71	1.10	1.73	2.48	4.25	5.95
Additional weight per 50 mm of stroke	All mounting brackets	0.11	0.16	0.24	0.26	0.40	0.44
Accessories	Rod end	0.07	0.11	0.22		0.40	
	Rod clevis	0.09	0.15	0.34		0.69	

Calculation: Example) C96SD40-100C

- Basic weight \qquad 0.64 [kg] (Basic, ø40)
- Additional weight . 0.16 (kg/50 st)
- Cylinder stroke \qquad 100 [st]
- Mounting bracket weight 0.32 [kg] (Double clevis)

Allowable Kinetic Energy

(Example) Find the upper limit of rod end load when an air cylinder of $\varnothing 63$ is operated at $500 \mathrm{~mm} / \mathrm{s}$. From a point indicating $500 \mathrm{~mm} / \mathrm{s}$ on the axis of abscissas, extend a line upward and find a point where it intersects with a line for the 63 mm bore size. Extend a line from the intersection to the left and find a load mass 80 kg .

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Rod cover	Aluminum die-cast	
2	Head cover	Aluminum die-cast	
3	Cylinder tube	Aluminum alloy	
4	Piston rod	Carbon steel	
5	Piston	Aluminum alloy	$\varnothing 32$ to ø63
		Aluminum die-cast	$ø 80, \varnothing 100$
6	Cushion ring A	Aluminum alloy	
7	Cushion ring B	Aluminum alloy	
8	Cushion seal holder	Aluminum alloy	
9	Tie-rod	Carbon steel	
10	Tie-rod nut	Steel	
11	Flat washer	Steel	$\varnothing 80, \varnothing 100$
12	Rod end nut	Steel	
13	Cushion valve	Resin	
14	Bushing	Bearing alloy	
15	Cushion seal	Urethane	
16	Bumper	Urethane	
17	Wear ring	Resin	
18	Piston seal	NBR	
19	Rod seal	NBR	
20	Cylinder tube gasket	NBR	
21	Cushion valve seal	NBR	
22	Magnet		

Replacement Parts/Seal Kit (Single rod)

Bore size $[\mathrm{mm}]$	Kit no.	Contents
$\mathbf{3 2}$	CS95-32	
$\mathbf{4 0}$	CS95-40	
$\mathbf{5 0}$	CS95-50	
$\mathbf{6 3}$	CS95-63	
$\mathbf{8 0}$	CS95-80	
100	CS96-100	

* Seal kits consist of items (15), (17) to (20) and can be ordered by using the seal kit number corresponding to each bore size.
* The seal kit includes a grease pack (10 g for $\varnothing 32$ to $\varnothing 50,20 \mathrm{~g}$ for $\varnothing 63$ and $\varnothing 80,30 \mathrm{~g}$ for $\varnothing 100$).
Order with the following part number when only the grease pack is needed.
Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Seal Kit (Double rod)

Bore size $[\mathrm{mm}]$	Kit no.	Contents
$\mathbf{3 2}$	CS95W-32	
$\mathbf{4 0}$	CS95W-40	
$\mathbf{5 0}$	CS95W-50	
$\mathbf{6 3}$	CS95W-63	
$\mathbf{8 0}$	CS95W-80	
100	CS96W-100	

* Seal kits consist of items (15), (18) to (20) and can be ordered by using the seal kit number corresponding to each bore size.
* The seal kit includes a grease pack (10 g for $\varnothing 32$ to $\varnothing 50,20 \mathrm{~g}$ for $ø 63$ and $\varnothing 80,30 \mathrm{~g}$ for $\varnothing 100$).
Order with the following part number when only the grease pack is needed.
Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

$C 96$ Series

Dimensions
Basic: C96S (D) B Bore size - Stroke C (J)

With rod boot

Bore size [mm]	Stroke range [mm]		A	$\begin{gathered} \varnothing B \\ \mathrm{~d} 11 \end{gathered}$	BG	\varnothing D	E	EE	G	H	KK	L2	L8	L9	L12	PL	R	RT	SL	SW	VA	VD	WA	WB	WH	ZZ
	Without rod boot	With rod boot																								
32	Up to 1000	Up to 1000	22	30	16	12	47	G 1/8	28.9	48	M10 x 1.25	15	94	4	6	13	32.5	M6 x 1	8	10	4	4	4	7	26	146
40	Up to 1900	Up to 1000	24	35	16	16	54	G 1/4	32.6	54	M12 $\times 1.25$	17	105	4	6.5	14	38	M6 x 1	8	13	4	4	5	8.9	30	163
50	Up to 1900	Up to 1000	32	40	16	20	66	G 1/4	32	69	M16 $\times 1.5$	24	106	5	8	14	46.5	M8 $\times 1.25$	-	17	4	4	6	5.1	37	179
63	Up to 1900	Up to 1000	32	45	16	20	77	G 3/8	38.6	69	M16 $\times 1.5$	24	121	5	8	16	56.5	M8 $\times 1.25$	-	17	4	4	9	6.3	37	194
80	Up to 1900	Up to 1000	40	45	17	25	99	G 3/8	38.4	86	M20 $\times 1.5$	30	128	-	10	16	72	M10 $\times 1.5$	-	22	4	4	11.5	6	46	218
100	Up to 1900*1	Up to 1000*1	40	55	17	25	118	G 1/2	42.9	91	M20 x 1.5	32	138	-	10	18	89	M10 $\times 1.5$	-	22	4	4	17	10	51	233

*1 Minimum stroke for trunnion mounting: 1 mm for bore size 32 to $80,5 \mathrm{~mm}$ for bore size 100

Bore size [mm]	$\varnothing \mathbf{\varnothing}$	$ø \mathrm{~d}$	f	ℓ												h											
				$\begin{array}{r} 1 \\ \text { to } \\ 50 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 51 \\ \text { to } \\ 100 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 101 \\ \text { to } \\ 150 \end{array}$	$\begin{gathered} 151 \\ \text { to } \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} 201 \\ \text { to } \\ 300 \end{gathered}$	$\begin{gathered} 301 \\ \text { to } \\ 400 \end{gathered}$	$\begin{gathered} 401 \\ \text { to } \\ 500 \end{gathered}$	$\begin{gathered} 501 \\ \text { to } \\ 600 \end{gathered}$	$\begin{gathered} 601 \\ \text { to } \\ 700 \end{gathered}$	$\begin{array}{\|c} 701 \\ \text { to } \\ 800 \end{array}$	$\begin{gathered} 801 \\ \text { to } \\ 900 \end{gathered}$	$\begin{array}{\|c\|} \hline 901 \\ \text { to } \\ 1000 \\ \hline \end{array}$	$\begin{aligned} & \hline 1 \\ & \text { to } \\ & 50 \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 51 \\ \text { to } \\ 100 \end{array}$	$\begin{gathered} 101 \\ \text { to } \\ 150 \end{gathered}$	$\begin{gathered} 151 \\ \text { to } \\ 200 \end{gathered}$	$\begin{gathered} 201 \\ \text { to } \\ 300 \end{gathered}$	$\begin{array}{\|c} \hline 301 \\ \text { to } \\ 400 \end{array}$	$\begin{gathered} 401 \\ \text { to } \\ 500 \end{gathered}$	$\begin{aligned} & 501 \\ & \text { to } \\ & 600 \end{aligned}$	$\begin{gathered} 601 \\ \text { to } \\ 700 \\ \hline \end{gathered}$	$\begin{gathered} 701 \\ \text { to } \\ 800 \end{gathered}$	$\begin{aligned} & 801 \\ & \text { to } \\ & 900 \end{aligned}$	$\begin{array}{\|c} \hline 901 \\ \text { to } \\ 1000 \\ \hline \end{array}$
32	36	54	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
40	36	54	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
50	51	64	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
63	51	64	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
80	56	68	30	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341
100	56	76	32	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341

ISO Standard (15552) Air Cylinder: Standard Type Double Acting, Single/Double Rod
 C96 Series

Dimensions

Basic: C96S (D) B Bore size - Stroke C (J) W

Bore size [mm]	Stroke range [mm]	A	$\begin{aligned} & \varnothing \mathbf{B} \\ & \text { d11 } \end{aligned}$	øD	EE	PL	RT	L12	KK	SW	G	BG	L8	VD	WA	WB	WH	ZY	E	R	L2	L9	H	SL
32	Up to 1000	22	30	12	G 1/8	13	M6 x 1	6	M10 x 1.25	10	28.9	16	94	4	4	7	26	190	47	32.5	15	4	48	8
40	Up to 1000	24	35	16	G $1 / 4$	14	M6 x 1	6.5	M12 x 1.25	13	32.6	16	105	4	5	8.9	30	213	54	38	17	4	54	8
50	Up to 1000	32	40	20	G 1/4	14	M8 x 1.25	8	M16 $\times 1.5$	17	32	16	106	4	6	5.1	37	244	66	46.5	24	5	69	-
63	Up to 1000	32	45	20	G 3/8	16	M8 x 1.25	8	M16 $\times 1.5$	17	38.6	16	121	4	9	6.3	37	259	77	56.5	24	5	69	-
80	Up to 1000	40	45	25	G 3/8	16	$\mathrm{M} 10 \times 1.5$	10	M20 $\times 1.5$	22	38.4	17	128	4	11.5	6	46	300	99	72	30	-	86	-
100	Up to $1000{ }^{* 1}$	40	55	25	G 1/2	18	$\mathrm{M} 10 \times 1.5$	10	M20 x 1.5	22	42.9	17	138	4	17	10	51	320	118	89	32	-	91	-

*1 Minimum stroke for trunnion mounting: 1 mm for bore size 32 to $80,5 \mathrm{~mm}$ for bore size 100

Bore size [mm]	\varnothing ¢	ød	f	ℓ												h											
				$\begin{gathered} 1 \\ \text { to } \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 51 \\ \text { to } \\ 100 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 101 \\ \text { to } \\ 150 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 151 \\ \text { to } \\ 200 \\ \hline \end{array}$	$\begin{gathered} 201 \\ \text { to } \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} \hline 301 \\ \text { to } \\ 400 \\ \hline \end{gathered}$	$\begin{gathered} 401 \\ \text { to } \\ 500 \\ \hline \end{gathered}$	$\begin{gathered} 501 \\ \text { to } \\ 600 \\ \hline \end{gathered}$	$\begin{gathered} 601 \\ \text { to } \\ 700 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 701 \\ \text { to } \\ 800 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 801 \\ \text { to } \\ 900 \\ \hline \end{array}$	$\begin{gathered} 901 \\ \text { to } \\ 1000 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \text { to } \\ 50 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 51 \\ \text { to } \\ 100 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 101 \\ \text { to } \\ 150 \\ \hline \end{array}$	$\begin{gathered} 151 \\ \text { to } \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} 201 \\ \text { to } \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 301 \\ \text { to } \\ 400 \\ \hline \end{gathered}$	$\begin{gathered} 401 \\ \text { to } \\ 500 \\ \hline \end{gathered}$	$\begin{gathered} 501 \\ \text { to } \\ 600 \\ \hline \end{gathered}$	$\begin{gathered} \hline 601 \\ \text { to } \\ 700 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 701 \\ \text { to } \\ 800 \\ \hline \end{array}$	$\begin{gathered} 801 \\ \text { to } \\ 900 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 901 \\ \text { to } \\ 1000 \\ \hline \end{array}$
32	36	54	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
40	36	54	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
50	51	64	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
63	51	64	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
80	56	68	30	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341
100	56	76	32	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341

C96 Series

Dimensions

Basic: C96S (D) B Bore size - Stroke C (JJ) W

With rod boot at both ends

Bore size [mm]	Stroke range [mm]	A	$ø$ D	EE	PL	RT	L12	KK	SW	G	BG	L8	VD	WA	WB	E	R	L9	SL
32	Up to 1000	22	12	G 1/8	13	M6 x 1	6	M10 x 1.25	10	28.9	16	94	4	4	7	47	32.5	4	8
40	Up to 1000	24	16	G 1/4	14	M6 x 1	6.5	M12 x 1.25	13	32.6	16	105	4	5	8.9	54	38	4	8
50	Up to 1000	32	20	G 1/4	14	M8 $\times 1.25$	8	M16 x 1.5	17	32	16	106	4	6	5.1	66	46.5	5	-
63	Up to 1000	32	20	G 3/8	16	M8 x 1.25	8	M16 x 1.5	17	38.6	16	121	4	9	6.3	77	56.5	5	-
80	Up to 1000	40	25	G 3/8	16	M10 $\times 1.5$	10	M20 x 1.5	22	38.4	17	128	4	11.5	6	99	72	-	-
100	Up to 1000*1	40	25	G 1/2	18	M10 $\times 1.5$	10	M20 x 1.5	22	42.9	17	138	4	17	10	118	89	-	-

*1 Minimum stroke for trunnion mounting: 1 mm for bore size 32 to $80,5 \mathrm{~mm}$ for bore size 100

Bore size [mm]	\varnothing ø	$ø \mathrm{~d}$	f	ℓ												h											
				$\begin{gathered} \hline 1 \\ \text { to } \\ 50 \end{gathered}$	$\begin{gathered} 51 \\ \text { to } \\ 100 \end{gathered}$	$\begin{array}{\|c\|} \hline 101 \\ \text { to } \\ 150 \\ \hline \end{array}$	$\begin{gathered} 151 \\ \text { to } \\ 200 \end{gathered}$	$\begin{array}{\|c\|} \hline 201 \\ \text { to } \\ 300 \\ \hline \end{array}$	$\begin{gathered} 301 \\ \text { to } \\ 400 \end{gathered}$	$\begin{array}{\|c\|} \hline 401 \\ \text { to } \\ 500 \end{array}$	$\begin{gathered} 501 \\ \text { to } \\ 600 \end{gathered}$	$\begin{array}{\|c\|} \hline 601 \\ \text { to } \\ 700 \\ \hline \end{array}$	$\begin{gathered} 701 \\ \text { to } \\ 800 \end{gathered}$	$\begin{gathered} 801 \\ \text { to } \\ 900 \end{gathered}$	$\begin{gathered} \hline 901 \\ \text { to } \\ 1000 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1 \\ \text { to } \\ 50 \end{array}$	$\begin{gathered} 51 \\ \text { to } \\ 100 \end{gathered}$	$\begin{gathered} \hline 101 \\ \text { to } \\ 150 \end{gathered}$	$\begin{array}{c\|} \hline 151 \\ \text { to } \\ 200 \end{array}$	$\begin{gathered} 201 \\ \text { to } \\ 300 \end{gathered}$	$\begin{gathered} 301 \\ \text { to } \\ 400 \end{gathered}$	$\begin{gathered} 401 \\ \text { to } \\ 500 \end{gathered}$	$\begin{aligned} & 501 \\ & \text { to } \\ & 600 \end{aligned}$	$\begin{array}{\|c\|} \hline 601 \\ \text { to } \\ 700 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 701 \\ \text { to } \\ 800 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 801 \\ \text { to } \\ 900 \\ \hline \end{array}$	$\begin{gathered} 901 \\ \text { to } \\ 1000 \end{gathered}$
32	36	54	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
40	36	54	23	12.5	25	37.5	50	75	100	125	150	175	200	225	250	75	88	100	113	138	163	188	213	238	263	288	313
50	51	64	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
63	51	64	25	12.5	25	37.5	50	75	100	125	150	175	200	225	250	87	100	112	125	150	175	200	225	250	275	300	325
80	56	68	30	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341
100	56	76	32	12.5	25	37.5	50	75	100	125	150	175	200	225	250	103	116	128	141	166	191	216	241	266	291	316	341

Dimensions: With Mounting Bracket (Dimensions are common to single rod and double rod.)

Center trunnion (T)

Rod flange (F)

Single clevis (C)
Double clevis (D)

Single clevis (C)

Double clevis (D)

Bore size $[\mathrm{mm}]$	\mathbf{E}_{1}	TR	AH	AO	AT	AB	SA	XA
$\mathbf{3 2}$	48	32	32	10	4.5	7	142	144
$\mathbf{4 0}$	55	36	36	11	4.5	10	161	163
$\mathbf{5 0}$	68	45	45	12	5.5	10	170	175
$\mathbf{6 3}$	80	50	50	12	5.5	10	185	190
$\mathbf{8 0}$	100	63	63	14	6.5	12	210	215
$\mathbf{1 0 0}$	120	75	71	16	6.5	14.5	220	230

Bore size $[\mathrm{mm}]$	TM	TL	TD e8	$\mathbf{U W}$	$\mathbf{L \mathbf { L }}$	$\mathbf{X V}$	\mathbf{Z}
$\mathbf{3 2}$	50	12	12	49	17	73	95
$\mathbf{4 0}$	63	16	16	58	22	82.5	106.5
$\mathbf{5 0}$	75	16	16	71	22	90	122
$\mathbf{6 3}$	90	20	20	87	28	97.5	129.5
$\mathbf{8 0}$	110	20	20	110	34	110	150
$\mathbf{1 0 0}$	132	25	25	136	40	120	160

Bore size $[\mathrm{mm}]$	\mathbf{R}	TF	FB	E2	$\mathbf{U F}$	\mathbf{W}	$\mathbf{M F}$
$\mathbf{3 2}$	32	64	$\mathbf{7}$	50	79	16	10
$\mathbf{4 0}$	36	72	9	55	90	20	10
$\mathbf{5 0}$	45	90	9	70	110	25	12
$\mathbf{6 3}$	50	100	9	80	120	25	12
$\mathbf{8 0}$	63	126	12	100	153	30	16
$\mathbf{1 0 0}$	75	150	14	120	178	35	16

$[\mathrm{mm}]$		
Bore size $[\mathrm{mm}]$	MF	ZF
$\mathbf{3 2}$	10	130
$\mathbf{4 0}$	10	145
$\mathbf{5 0}$	12	155
$\mathbf{6 3}$	12	170
$\mathbf{8 0}$	16	190
$\mathbf{1 0 0}$	16	205

| Bore
 size
 $[\mathrm{mm}]$ | EW | CD
 H9 | \mathbf{L} | MR | XD | UB
 h14 | CB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H14 | | | | | | | | EB

C96 Series

Accessories

Dimensions: Mounting Brackets

Axial foot (L)

Bore size $[\mathrm{mm}]$	Part no.	$\mathbf{A B}$	TG ± 0.2	\mathbf{E}	$\mathbf{T R}$	$\mathbf{A O}$	$\mathbf{A U}$	$\mathbf{A H}$	$\mathbf{A T}$	$\mathbf{R 2}$	Screw size
$\mathbf{3 2}$	L 5032	7	32.5	48	32	10	24	32	4.5	15	$\mathrm{M} 6 \times 16 \mathrm{~L}$
$\mathbf{4 0}$	L 5040	10	38	55	36	11	28	36	4.5	17.5	$\mathrm{M} 6 \times 16 \mathrm{~L}$
$\mathbf{5 0}$	L 5050	10	46.5	68	45	12	32	45	5.5	20	$\mathrm{M} 8 \times 20 \mathrm{~L}$
$\mathbf{6 3}$	L 5063	10	56.5	80	50	12	32	50	5.5	22.5	$\mathrm{M} 8 \times 20 \mathrm{~L}$
$\mathbf{8 0}$	L 5080	12	72	100	63	14	41	63	6.5	22.5	$\mathrm{M} 10 \times 20 \mathrm{~L}$
$\mathbf{1 0 0}$	$\mathbf{L 5 1 0 0}$	14.5	89	120	75	16	41	71	6.5	27.5	$\mathrm{M} 10 \times 20 \mathrm{~L}$

* Supplied with 4 mounting screws.

Flange (F, G)

$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & {[\mathrm{mm}]} \end{aligned}$	Part no.	$\begin{gathered} \text { D } \\ \text { H11 } \end{gathered}$	$ø$ FB	TG	E	R	MF	TF	UF	L4	Screw size
32	F5032	30	7	32.5	50	32	10	64	79	5	M6 x 20L
40	F5040	35	9	38	55	36	10	72	90	5	M6 x 20L
50	F5050	40	9	46.5	70	45	12	90	110	6.5	M8 x 20L
63	F5063	45	9	56.5	80	50	12	100	120	6.5	M8 x 20L
80	F5080	45	12	72	100	63	16	126	153	9	M10 x 25L
100	F5100	55	14	89	120	75	16	150	178	9	M10 x 25L

* Supplied with 4 mounting screws.

Single clevis (C)

Bore size $[\mathrm{mm}]$	Part no.	$\mathbf{E}_{\mathbf{1}}$	$\mathbf{E W}$	$\mathbf{T G} \mathbf{1}$	$\mathbf{F L}$	$\boldsymbol{e}_{\mathbf{1}}$	\mathbf{L}	$\boldsymbol{\ell}_{\mathbf{2}}$	$\varnothing \mathbf{d}_{\mathbf{1}}$	$\varnothing \mathbf{C D}$	$\mathbf{M R}$	$\varnothing \mathbf{d}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$
$\mathbf{3 2}$	$\mathbf{C} 5032$	45	$26_{-0.6}^{-0.2}$	32.5	22	5	12	5.5	30	10	9.5	6.6	6.5
$\mathbf{4 0}$	$\mathbf{C} 5040$	51	$28_{-0.6}^{-0.2}$	38	25	5	15	5.5	35	12	12	6.6	6.5
$\mathbf{5 0}$	$\mathbf{C} 5050$	64	$32_{-0.6}^{-0.2}$	46.5	27	5	15	6.5	40	12	12	9	8.5
$\mathbf{6 3}$	$\mathbf{C} 5063$	74	$40_{-0.6}^{-0.2}$	56.5	32	5	20	6.5	45	16	16	9	8.5
$\mathbf{8 0}$	$\mathbf{C} 5080$	94	$50_{-0.6}^{-0.2}$	72	36	5	20	10	45	16	16	11	11
$\mathbf{1 0 0}$	$\mathbf{C 5 1 0 0}$	113	$60_{-0.6}^{-0.2}$	89	41	5	25	10	55	20	20	11	12

* Supplied with 4 mounting screws.

Double clevis (D)

Bore size [mm]	Part no.	TG1	FL	ℓ_{1}	L	ℓ_{2}	ød1	$\varnothing \mathrm{CD}$	MR	$ø \mathrm{~d}_{2}$	R1	E2	UB	CB
32	D5032	32.5	22	5	12	5.5	30	10	9.5	6.6	6.5	48	45	26
40	D5040	38	25	5	15	5.5	35	12	12	6.6	6.5	56	52	28
50	D5050	46.5	27	5	15	6.5	40	12	12	9	8.5	64	60	32
63	D5063	56.5	32	5	20	6.5	45	16	16	9	8.5	75	70	40
80	D5080	72	36	5	20	10	45	16	16	11	11	95	90	50
100	D5100	89	41	5	25	10	55	20	20	11	12	115	110	60

* Supplied with 4 mounting screws, clevis pin, and clevis pin bracket.

Clevis pivot bracket (E)

Single clevis with ball joint (CS)

Bore size [mm]	Part no.	A	$\left\|\begin{array}{c} \mathbf{B} \\ (\text { Max. }) \end{array}\right\|$	C		$\begin{gathered} \text { EN } \\ 0 \\ -0.1 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{E R} \\ \text { (Max.) } \end{array}$	${ }^{\circ} \mathrm{F}+11$	\varnothing E	L	øM	N	P	$\underset{ \pm 0.5}{\mathbf{H}}$
32	CS5032	32.5	10.5	22	10	14	15	30	6.6	45	10.5	5.5	5	-
40	CS5040	38	12	25	12	16	18	35	6.6	55	11	5.5	5	-
50	CS5050	46.5	15	27	16	21	20	40	9	65	15	6.5	5	51
63	CS5063	56.5	15	32	16	21	23	45	9	75	15	6.5	5	-
80	CS5080	72	18	36	20	25	27	45	11	95	18	10	5	70
100	CS5100	89	18	41	20	25	30	55	11	115	18	10	5	-

* Supplied with 4 mounting screws.

C96 Series

Dimensions: Pivot Brackets for Cylinder Mounting

Double clevis pivot bracket (DS)/for ES accessory

$\begin{aligned} & \text { Bore } \\ & \text { size } \\ & {[\mathrm{mm}]} \end{aligned}$	Part no.	E	B1	B_{2}	B3	L1	TG1	T	$\begin{gathered} \ell_{1} \\ \text { (Min.) } \end{gathered}$	ℓ_{2}	FL	$\underset{(M a x .)}{\mathbf{H}}$	$\varnothing d_{1}$	$\varnothing d_{2}$	${ }^{6} \mathrm{~d}_{3}$	øCN	$\left\lvert\, \begin{gathered} \text { SR } \\ (\text { Max. }) \end{gathered}\right.$	R
32	DS5032	45	14	34	3.3	11.5	32.5	3	5	5.5	22	10	30	10.5	6.6	10	11	17
40	DS5040	55	16	40	4.3	12	38	4	5	5.5	25	10	35	11	6.6	12	13	20
50	DS5050	65	21	45	4.3	14	46.5	4	5	6.5	27	12	40	15	9	16	18	22
63	DS5063	75	21	51	4.3	14	56.5	4	5	6.5	32	12	45	15	9	16	18	25
80	DS5080	95	25	65	4.3	16	72	4	5	10	36	16	45	18	11	20	22	30
100	DS5100	115	25	75	6.3	16	89	4	5	10	41	16	55	18	11	20	22	32

[^1]
Clevis pivot bracket with ball joint (ES)

Bore size [mm]	Part no.	$\varnothing d_{3}$	$\varnothing \mathrm{CN}$	${ }^{\circ} \mathrm{S} 5$	K1	$\begin{gathered} \mathbf{K}_{2} \\ \text { (Max.) } \end{gathered}$	ℓ_{2}	G_{1}	G2	$\begin{gathered} \mathbf{G}_{3} \\ \text { (Max.) } \end{gathered}$	EN	EU	CH	H6	$\begin{gathered} \text { ER } \\ \text { (Max.) } \end{gathered}$
32	ES5032	11	10	6.6	38	51	8.5	21	18	31	14	10.5	32	10	15
40	ES5040	11	12	6.6	41	54	8.5	24	22	35	16	12	36	10	18
50	ES5050	15	16	9	50	65	10.5	33	30	45	21	15	45	12	20
63	ES5063	15	16	9	52	67	10.5	37	35	50	21	15	50	12	23
80	ES5080	18	20	11	66	86	11.5	47	40	60	25	18	63	14	27
100	ES5100	18	20	11	76	96	12.5	55	50	70	25	18	71	15	30

Dimensions: Piston Rod Accessories

Floating joint: JA

[mm]

Bore size [mm]	Part no.	M	A	B	C	$ø$ D	E	F	G	H	P	U	Load [kN]	Weight [g]	Angle
32	JA30-10-125	M10 $\times 1.25$	49.5	19.5	-	24	5	8	8	17	9	0.5	2.5	70	$\pm 0.5^{\circ}$
40	JA40-12-125	M12 $\times 1.25$	60	20	-	31	6	11	11	22	13	0.75	4.4	160	
50, 63	JA50-16-150	M16 $\times 1.5$	71.5	22	-	41	7.5	14	13.5	27	15	1	11	300	
80, 100	JAH50-20-150	M20 $\times 1.5$	101	28	31	59.5	11.5	24	16	32	18	2	18	1080	

* Black color

Rod clevis: GKM (ISO 8140)

| $[\mathrm{lnm}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* Supplied with clevis pin and clevis pin bracket.

Rod end: KJ (ISO 8139)

Bore size $[\mathrm{mm}]$	Part no.	$\mathbf{d}_{\mathbf{3}}$	$\varnothing \mathbf{d}_{1}$ н9	\mathbf{h}	\mathbf{d}_{6} (Max.)	$\mathbf{b}_{1 \text { h12 }}$	$\boldsymbol{\ell}$ (Min.)	$\boldsymbol{\alpha}$	$\boldsymbol{\ell}_{\mathbf{3}}$
$\mathbf{3 2}$	KJ10D	M10 $\times 1.25$	10	43	28	14	20	4°	15
$\mathbf{4 0}$	KJ12D	M12 $\times 1.25$	12	50	32	16	22	4°	17
$\mathbf{5 0 , 6 3}$	KJ16D	M16 $\times 1.5$	16	64	42	21	28	4°	23
$\mathbf{8 0 , 1 0 0}$	KJ20D	M20 1.5	20	77	50	25	33	4°	27

ISO (15552) Standard

Air Cylinder: Non-rotating Rod Type Double Acting, Single/Double Rod C96K Series
 $\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

Applicable Auto Switches/Refer to the Web Catalog or Best Pneumatics for further information on auto switches.

[^2]* Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW * Solid state auto switches marked with "○" are produced upon receipt of order.
$1 \mathrm{~m} \cdots \ldots . . . \mathrm{M}$ (Example) M9NWM
$3 \mathrm{~m} \cdots \ldots \ldots . \mathrm{L}$ (Example) M9NWL
$5 \mathrm{~m} \cdots \ldots . . \mathrm{Z}$ (Example) M9NWZ
* Since there are other applicable auto switches than listed above, refer to page 185 for details.
* The D-A9 $\square /$ M9 $\square / M 9 \square W / M 9 \square A$ auto switches are shipped together, but not assembled.
(Only the auto switch mounting brackets are assembled before shipment.)

Specifications

C96K Series

Construction

Component Parts

No.	Description	Material	Q'ty	Note
$\mathbf{1}$	Rod cover	Aluminum die-cast	1	Trivalent chromated
$\mathbf{2}$	Head cover	Aluminum die-cast	1	Trivalent chromated
$\mathbf{3}$	Cylinder tube	Aluminum alloy	1	Hard anodized
$\mathbf{4}$	Piston rod	Stainless steel	1	
$\mathbf{5}$	Piston	Aluminum alloy	1	
$\mathbf{6}$	Cushion ring	Rolled steel	2	Trivalent zinc chromated
$\mathbf{7}$	Piston nut	Rolled steel	1	Trivalent zinc chromated
$\mathbf{8}$	Non-rotating guide	Bearing alloy	1	
9	Cushion valve	Resin	2	
$\mathbf{1 0}$	Tie-rod	Carbon steel	4	Trivalent zinc chromated
$\mathbf{1 1}$	Tie-rod nut	Rolled steel	8	Trivalent zinc chromated
$\mathbf{1 2}$	Cushion seal holder	Aluminum alloy	2	Anodized
$\mathbf{1 3}$	Wear ring	Resin	1	
$\mathbf{1 4}$	Rod seal	NBR	1	
$\mathbf{1 5}$	Piston seal	NBR	1	
16	Cushion seal	Urethane	2	
$\mathbf{1 7}$	Cushion valve seal	NBR	2	
$\mathbf{1 8}$	Cylinder tube gasket	NBR	2	
$\mathbf{1 9}$	Bumper	Urethane	2	
20	Rod end nut	Rolled steel	1	Trivalent zinc chromated
$\mathbf{2 1}$	Magnet	-	(1)	
$\mathbf{2 2}$	Flat washer	Steel	8	For ø80, ø100
$\mathbf{2 3}$	Hexagon socket head set screw	Steel wire	2	Trivalent black zinc chromated

Replacement Parts/Seal Kit (Single rod)

Bore size $[\mathrm{mm}]$	Kit no.	Contents
$\mathbf{3 2}$	CK95-32	
$\mathbf{4 0}$	CK95-40	
$\mathbf{5 0}$	CK95-50	Kits include items
$\mathbf{6 3}$	CK95-63	
$\mathbf{8 0}$	CK95-80	
$\mathbf{1 0 0}$	CK96-100	

* Seal kits consist of items (13) to (16), (18) and can be ordered by using the seal kit number corresponding to each bore size.
* The seal kit includes a grease pack (10 g for $\varnothing 32$ to $ø 50,20 \mathrm{~g}$ for $ø 63$ and $\varnothing 80,30 \mathrm{~g}$ for $\varnothing 100$).
Order with the following part number when only the grease pack is needed.
Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Seal Kit (Double rod)

Bore size $[\mathrm{mm}]$	Kit no.	Contents
$\mathbf{3 2}$	CK95W-32	
$\mathbf{4 0}$	CK95W-40	
$\mathbf{5 0}$	Kits include items	
$\mathbf{6 3}$		(14) to (16, (18.
$\mathbf{8 0}$		
$\mathbf{1 0 0}$	CK95W-80	
	CK96W-100	

* Seal kits consist of items (14) to (16), (18) and can be ordered by using the seal kit number corresponding to each bore size.
* The seal kit includes a grease pack (10 g for $\varnothing 32$ to $\varnothing 50,20 \mathrm{~g}$ for $\varnothing 63$ and $\varnothing 80,30 \mathrm{~g}$ for $\varnothing 100$).
Order with the following part number when only the grease pack is needed.
Grease pack part number: GR-S-010 (10 g), GR-S-020 (20 g)

Dimensions (Without mounting bracket)
C96K (D) B Bore size - Stroke C

C96K (D) B Bore size - Stroke CW

* Mounting brackets are the same as standard type. Refer to page 168 for details.

Bore size [mm]	Stroke range [mm]	A	$\begin{aligned} & \varnothing \mathbf{B} \\ & \mathbf{d} 11 \end{aligned}$	D1	$ø$ D	EE	PL	RT	L12	KK	SW	G	BG	L8	VD	VA	WA	WB	WH	ZZ	ZY	E	R	L2	L9	H	SL
32	Up to 500	22	30	12.2	12	G 1/8	13	M6 x 1	6	M10 x 1.25	10	28.9	16	94	4	4	4	7	26	146	190	47	32.5	15	4	48	8
40	Up to 500	24	35	14.2	16	G $1 / 4$	14	M6 x 1	6.5	M12 x 1.25	13	32.6	16	105	4	4	5	8.9	30	163	213	54	38	17	4	54	8
50	Up to 600	32	40	19	20	G 1/4	14	M8 x 1.25	8	M16 x 1.5	17	32	16	106	4	4	6	5.1	37	179	244	66	46.5	24	5	69	-
63	Up to 600	32	45	19	20	G 3/8	16	M8 x 1.25	8	M16 x 1.5	17	38.6	16	121	4	4	9	6.3	37	194	259	77	56.5	24	5	69	-
80	Up to 800	40	45	23	25	G 3/8	16	M10 $\times 1.5$	10	M20 x 1.5	22	38.4	17	128	4	4	11.5	6	46	218	300	99	72	30	-	86	-
100	Up to 800*1	40	55	23	25	G 1/2	18	M10 $\times 1.5$	10	M20 x 1.5	22	42.9	17	138	4	4	17	10	51	233	320	118	89	32	-	91	-

ISO (15552) Standard

Smooth Cylinder Double Acting, Single Rod C96Y Series
$\varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

The C96Y series, Smooth Cylinder, $\varnothing 125$ is the same as the previous model. For details, refer to the Web Catalog.

*1 Water-resistant type auto switches can be mounted on the above models, but SMC cannot guarantee water resistance.
Please contact SMC regarding water-resistant types with the above model numbers.

* Lead wire length symbols: $0.5 \mathrm{~m}$. Nil (Example) M9NW \quad * Solid state auto switches marked with " \bigcirc " are produced upon receipt of order.
$1 \mathrm{~m} \cdots \ldots . . \mathrm{M}$ (Example) M9NWM
$3 \mathrm{~m} \cdots \ldots \ldots . \mathrm{L}$ (Example) M9NWL
$5 \mathrm{~m} \cdots \ldots . . \mathrm{Z}$ (Example) M9NWZ
* Since there are other applicable auto switches than listed above, refer to page 185 for details.
* The D-A9 $\square /$ M9 $\square /$ M9 \square W/M9 \square A auto switches are shipped together, but not assembled.
(Only the auto switch mounting brackets are assembled before shipment.)

ISO (15552) Standard Smooth Cylinder Double Acting, Single Rod

Designed with a low sliding resistance of the piston, this air cylinder is ideal for applications such as contact pressure control, which requires smooth movements at low pressure.

Sliding resistance Bi -directional low-friction operation possible.

Low sliding resistance

Min. operating pressure -0.01 MPa

Application Example

Pressure can be controlled regardless of its direction.

Made to Order (For details, refer to pages 190 to 199.)

Symbol	Specifications
-XA \square	Change of rod end shape
-XC14	Change of trunnion bracket mounting position
-XC7	Tie-rod, tie-rod nut, etc. made of stainless steel
-XC10	Dual stroke cylinder/Double rod type
-XC65	Made of stainless steel (Combination of -XC7 and -XC68)
-XC68	Made of stainless steel (with hard chrome plated piston rod)

Refer to pages 181 to 185 for cylinders with auto switches.

- Auto Switch Proper Mounting Position
(Detection at stroke end) and Mounting Height
- Minimum Stroke for Auto Switch Mounting
- Auto Switch Mounting Brackets/Part No.
- Operating Range

Dimensions are the same as standard type. For details, refer to pages 165 to 167.

Replacement Parts/Seal Kit

Bore size $[\mathrm{mm}]$	Kit no.	Contents
$\mathbf{3 2}$	C96Y32-PS	
$\mathbf{4 0}$	C96Y40-PS	Rod seal 1 pc. Piston seal 1 pc.
$\mathbf{5 0}$	C96Y50-PS	Cylinder tube gasket 2 pcs.
$\mathbf{6 3}$	C96Y63-PS	Cyse Grease pack (10 g) 1 pc.
$\mathbf{8 0}$	C96Y80-PS	
$\mathbf{1 0 0}$	C96Y100-PS	

* Seal kits consist of items shown above, and can be ordered by using the seal kit number corresponding to each bore size.
* Only use the grease recommended by SMC Order using the following part numbers when only maintenance grease is needed.

Volume	Part no.
5 g	GR-L-005
10 g	GR-L-010
150 g	GR-L-150

Specifications

Bore size [mm]	32	40	50	63	80	100
Action	Double acting					
Fluid	Air					
Proof pressure	1.05 MPa					
Maximum operating pressure	0.7 MPa					
Minimum operating pressure	0.02 MPa		0.01 MPa			
Ambient and fluid temperature	Without auto switch: -10 to $70^{\circ} \mathrm{C}$ (No freezing) With auto switch: -10 to $60^{\circ} \mathrm{C}$ (No freezing)					
Lubrication	Not required (Non-lube)					
Operating piston speed	5 to $500 \mathrm{~mm} / \mathrm{s}$					
Allowable stroke tolerance	Up to 500 stroke: ${ }_{0}^{+2}, 501$ to 1000 stroke: ${ }_{0}^{+2.4}$					
Cushion	Bumper					
Port size	G 1/8	G 1/4	G 1/4	G 3/8	G 3/8	G 1/2
Mounting	Basic, Axial foot, Rod flange, Head flange, Single clevis, Double clevis, Center trunnion					
Allowable leakage rate	$0.5 \mathrm{~L} / \mathrm{min}$ (ANR)					

Maximum Strokes

Bore size $[\mathrm{mm}]$	Maximum stroke*1
$\mathbf{3 2}$	800
$\mathbf{4 0}$	800
$\mathbf{5 0}$	1000
$\mathbf{6 3}$	1000
$\mathbf{8 0}$	1000
100	1000

Intermediate strokes are available.
*1 Please consult with SMC for longer strokes.

Accessories

Mounting		Basic	Foot	Rod flange	Head flange	Single clevis	Double clevis	Center trunnion
Standard	Rod end nut	\bullet						
	Clevis pin	-	-	-	-	-	\bullet	-
Option	Rod end	\bullet						
	Rod clevis	\bullet						
	Rod boot	-	-	-	-	-	-	-

[^3]
Smooth Cylinders
 Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 219 for safety instructions. For actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: http://www.smcworld.com

Recommended Pneumatic Circuit

Refer to the diagrams below when controlling speed with the smooth cylinder.

\triangle Warning

Horizontal Operation (Speed control)

Dual speed controller
Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.* More stable low speed operation can be achieved than meter-in circuit alone.

Vertical Operation (Speed control)

II

Meter-in speed controller
Meter-in speed controllers can reduce lurching while controlling the speed. The two adjustment needles facilitate adjustment.

II

(1) Speed is controlled by meter-out circuit. Using concurrently the meter-in circuit can alleviate the stick-slip.*
(2) Installing a regulator with check valve at position (c) can reduce lurching during descent and operation delay during ascent.
As a guide,
adjust \mathbf{P}_{2} to make $\mathbf{W}+\mathbf{P}_{2} \mathbf{A}=\mathbf{P} \mathbf{0 a}$.

[^4]
Smooth Cylinders Specific Product Precautions 2

Be sure to read this before handling the products. Refer to page 219 for safety instructions. For actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website: http://www.smcworld.com

Lubrication

\triangle Caution

1. Operate without lubrication from a pneumatic system lubricator.
A malfunction may occur when lubricated in this fashion.
2. Only use the grease recommended by SMC.

The use of grease other than the specified type can cause a malfunction.

- Order using the following part numbers when only maintenance grease is needed.
Grease

Volume	Part no.
5 g	GR-L-005
10 g	GR-L-010
150 g	GR-L-150

3. Do not wipe out the grease in the sliding part of the air cylinder.
Wiping grease from the sliding part of the air cylinder forcefully may cause malfunction.

Air Supply

\triangle Caution

1. Take measures to prevent pressure fluctuation.

A malfunction may occur with the fluctuation of pressure.

C96 Series

Auto Switch Mounting

Auto Switch Proper Mounting Position

Auto switch model Bore size	$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 V } \\ & \text { D-M9 } \square \mathbf{A} \end{aligned}$		$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$		$\begin{aligned} & \text { D-Y59 } \\ & \text { D-Y69 } \\ & \text { D-Y7P } \\ & \text { D-Y7H } \\ & \text { D-Y7■W } \\ & \text { D-Y7BA } \\ & \text { D-Z7口 } \\ & \text { D-Z80 } \end{aligned}$		D-P4DW		D-G39D-K39D-A3 \squareD-A44D-A5 \squareD-A6 \square		$\begin{aligned} & \text { D-F5 } \\ & \text { D-J59 } \\ & \text { D-F59F } \end{aligned}$		D-J51		D-A59W		D-F5NT	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B	A	B
32	14	10.5	10	6.5	7.5	4	7	3.5	4	0	10.5	7	10	6.5	8	4.5	15.5	12
40	14	14	10	10	7.5	7.5	7	7	4	4	10.5	10.5	10	10	8	8	15.5	15.5
50	15.5	14.5	11.5	10.5	9	8	8.5	7.5	5.5	4.5	12	11	11.5	10.5	9.5	8.5	17	16
63	16.5	15.5	12.5	11.5	10	9	9.5	8.5	6.5	5.5	13	12	12.5	11.5	10.5	9.5	18	17
80	21.5	18	17.5	14	15	11.5	14.5	11	11.5	8	18	14.5	17.5	14	15.5	12	23	19.5
100	21.5	19	17.5	15	15	12.5	14.5	12	11.5	9	18	15.5	17.5	15	15.5	13	23	20.5

* Adjust the auto switch after confirming the operating conditions in the actual setting.

Auto Switch Mounting Height

Auto switch model Bore size	$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{W} \\ & \text { D-M9 } \square \text { A } \\ & \text { D-A9 } \end{aligned}$		D-A9 \square V		$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square \text { WV } \\ & \text { D-M9 } \square \mathrm{AV} \end{aligned}$		$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \square \\ & \text { D-A59W } \end{aligned}$		$\begin{aligned} & \text { D-F5 } \\ & \text { D-J59 } \\ & \text { D-F59F } \\ & \text { D-F5 } \quad \text { W } \\ & \text { D-J59W } \\ & \text { D-F5BA } \\ & \text { D-F5NT } \end{aligned}$		$\begin{aligned} & \text { D-G39 } \\ & \text { D-K39 } \\ & \text { D-A3 } \end{aligned}$		D-A44		$\begin{aligned} & \text { D-Y59 } \square \\ & \text { D-Y7P } \\ & \text { D-Y7■W } \\ & \text { D-Y7BA } \\ & \text { D-Z7■ } \\ & \text { D-Z80 } \end{aligned}$		$\begin{aligned} & \text { D-Y69 } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$		D-P4DW	
	Hs	Ht																		
32	24.5	23	27.5	23	30.5	23	35	24.5	32.5	25	67	27.5	77	27.5	25.5	23	26.5	23	38	31
40	28.5	25.5	31.5	25.5	34	25.5	38.5	27.5	36.5	27.5	71.5	27.5	81.5	27.5	29.5	26	30	26	42	33
50	33.5	31	36	31	38.5	31	43.5	34.5	41	34	77	-	87	-	33.5	31	34.5	31	46.5	39
63	38.5	36	40.5	36	43	36	48.5	39.5	46	39	83.5	-	93.5	-	39	36	40	36	51.5	44
80	46.5	45	49	45	52	45	55	46.5	52.5	46.5	92.5	-	103	-	47.5	45	48.5	45	58	51.5
100	54	53.5	57	53.5	59.5	53.5	62	55	59.5	55	103	-	113.5	-	55.5	53.5	56.5	53.5	65.5	60.5

Minimum Stroke for Auto Switch Mounting

[^5]Minimum Stroke for Auto Switch Mounting

Auto switch model	Number of auto switches	Center trunnion						
		ø32	$ø 40$	ø50	ø63	$ø 80$	$\varnothing 100$	
$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \text { W } \end{aligned}$	```1 (Different surfaces, Same surface)```	75			85	90	95	
	n	$\begin{aligned} & 75+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$			$\begin{aligned} & 85+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 90+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 95+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	
$\begin{aligned} & \text { D-M9■V } \\ & \text { D-M9■WV } \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ \text { (Different surfaces, Same surface) } \\ \hline \end{array}$	50	55		60	65	70	
	n	$\begin{aligned} & 50+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 55+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 60+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 65+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 70+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	
D－M9■A	```1 2 (Different surfaces, Same surface)```	80			85	95	100	
	n	$\begin{aligned} & 80+40(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$			$\begin{aligned} & 85+40(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 95+40(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 100+40(n-2) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	
D－M9■AV	```1 (Different surfaces, Same surface)```	55			65	70	75	
	n	$\begin{aligned} & 55+30(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$			$\begin{aligned} & 65+30(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 70+30(n-2) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 75+30(n-2) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	
D－A9 \square	```\[\begin{array}{\|l	} \hline 1 \\ 2 \end{array} \] \[2 \] (Different surfaces, Same surface)```	70	75		80	85	95
	n	$\begin{aligned} & 70+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 75+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 80+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 85+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 95+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	
D－A9■V	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ \text { (Different surfaces, Same surface) } \\ \hline \end{array}$	45	50		55	60	70	
	n	$\begin{aligned} & 45+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$			$\begin{aligned} & 55+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 60+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 70+30(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	
$\begin{aligned} & \text { D-G39 } \\ & \text { D-K39 } \\ & \text { D-A3 } \end{aligned}$	$\begin{aligned} & 2 \\ & \text { (Different surfaces) } \\ & \hline \end{aligned}$	60	65		75	80	85	
	$\begin{aligned} & 2 \\ & \text { (Same surface) } \end{aligned}$	90	95		100	105	110	
	$\begin{aligned} & \mathrm{n} \\ & \text { (Different surfaces) } \\ & \hline \end{aligned}$	$\begin{aligned} & 60+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 65+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$		$\begin{aligned} & 75+30(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 80+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 85+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	
	$\begin{aligned} & n \\ & \text { (Same surface) } \end{aligned}$	$\begin{gathered} 90+100(n-2) \\ n=2,4,6,8 \cdots \end{gathered}$	$\begin{gathered} 95+100(n-2) \\ n=2,4,6,8 \cdots \end{gathered}$		$\begin{gathered} 100+100(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 105+100(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 110+100(n-2) \\ n=2,4,6,8 \cdots \\ \hline \end{gathered}$	
	1	60	65		75	80	85	
D－A44	$\begin{array}{\|l} \hline 2 \\ \text { (Different surfaces) } \\ \hline \end{array}$	70			75	80	85	
	$\begin{aligned} & 2 \\ & \text { (Same surface) } \\ & \hline \end{aligned}$	70			75	80	85	
	$\begin{array}{\|l\|} \hline n \\ \text { (Different surfaces) } \\ \hline \end{array}$	$\begin{aligned} & 70+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$			$\begin{aligned} & 75+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 80+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 85+30(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	
	n （Same surface）	$\begin{aligned} & 70+50(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$			$\begin{aligned} & 75+50(n-2) \\ & n=2,4,6,8 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 80+50(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	$\begin{aligned} & 85+50(n-2) \\ & n=2,4,6,8 \cdots \end{aligned}$	
	1	70			75	80	85	
$\begin{aligned} & \text { D-A5 } \square \\ & \text { D-A6 } \end{aligned}$	```1 (Different surfaces, Same surface)```	60		80	95	105	110	
	$\begin{aligned} & n \\ & \text { (Same surface) } \end{aligned}$	$\begin{aligned} & 60+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 80+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 95+55(n-4) / 2 \\ & n=4.8 .12 .16 \cdots \end{aligned}$	$\begin{gathered} 105+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 110+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	
D－A59W	2 （Different surfaces，Same surface）	60	70	85	105	110	115	
	$\begin{aligned} & n \\ & \text { (Same surface) } \end{aligned}$	$\begin{aligned} & 60+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 70+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 85+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 105+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 110+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 115+55(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	
	1	60	70	85	105	110	115	
$\begin{aligned} & \text { D-F5 } \square \\ & \text { D-J59 } \end{aligned}$	2 （Different surfaces，Same surface）	90	95		100	110	115	
$\begin{aligned} & \text { D-F5■W } \\ & \text { D-J59W } \\ & \text { D-F5BA } \end{aligned}$	$\begin{aligned} & n \\ & \text { (Same surface) } \end{aligned}$	$\begin{aligned} & 90+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 95+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{aligned} & 100+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{gathered} 110+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 115+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	
D－F59F	1	90	95		100	110	115	
D－F5NT	2 （Different surfaces，Same surface）	100	105		110	120	125	
	（Same surface）	$\begin{gathered} 100+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 105+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$		$\begin{gathered} 110+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 120+55(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{aligned} & 125+55(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	
	1	100	105		110	120	125	
$\begin{aligned} & \text { D-Y59口 } \\ & \text { D-Y7P } \\ & \text { D-Y7H } \\ & \text { D-Y7口W } \\ & \text { D-Z7口 } \\ & \text { D-Z80 } \\ & \hline \end{aligned}$	1 2 （Different surfaces，Same surface）	75	80		85	95	100	
	$\begin{array}{\|l\|} \hline n \\ \text { (Same surface) } \\ \hline \end{array}$	$\begin{aligned} & 75+40(n-4) / 2 \\ & n=4,8,12,16 \ldots \\ & \hline \end{aligned}$	$\begin{aligned} & 80+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$		$\begin{aligned} & 85+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{aligned} & 95+40(n-4) / 2 \\ & n=4,8,12,16 \cdots \\ & \hline \end{aligned}$	$\begin{gathered} 100+40(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	
$\begin{aligned} & \text { D-Y69 } \\ & \text { D-Y7PV } \\ & \text { D-Y7 } \square W V \end{aligned}$	```1 2 (Different surfaces, Same surface)```	55			60	70	75	
	$\begin{aligned} & n \\ & \text { (Same surface) } \end{aligned}$	$\begin{aligned} & 55+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$			$\begin{aligned} & 60+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 70+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	$\begin{aligned} & 75+30(n-4) / 2 \\ & n=4,8,12,16 \ldots \end{aligned}$	
D－Y7BA	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ \text { (Different surfaces, Same surface) } \\ \hline \end{array}$	85	90		100	105	110	
	$\begin{array}{\|l\|} \hline n \\ \text { (Same surface) } \\ \hline \end{array}$	$\begin{aligned} & 85+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$	$\begin{aligned} & 90+45(n-4) / 2 \\ & n=4,8,12,16 \cdots \end{aligned}$		$\begin{gathered} 100+45(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 105+45(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	$\begin{gathered} 110+45(n-4) / 2 \\ n=4,8,12,16 \cdots \end{gathered}$	
D－P4DW	```1 2 (Different surfaces, Same surface)```	110			115	125	130	
	$\begin{aligned} & n \\ & \text { (Same surface) } \\ & \hline \end{aligned}$	$\begin{gathered} 110+65(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$			$\begin{gathered} 115+65(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 125+65(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	$\begin{gathered} 130+65(n-4) / 2 \\ n=4,8,12,16 \cdots \\ \hline \end{gathered}$	

＊$n=3,4,5$ ．

Auto Switch Mounting Brackets/Part No.

Auto switch model	Bore size [mm]					
	$\varnothing 32$	$\varnothing 40$	$\varnothing 50$	ø63	$\varnothing 80$	$\varnothing 100$
$\begin{aligned} & \text { D-M9 } \square / \text { M9 } \square \text { V } \\ & \text { D-M9 W/M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { A/M9 AV } \\ & \text { D-A9 } \square \text { A9 } \square V \end{aligned}$	BMB5-032	BMB5-032	BA7-040	BA7-040	BA7-063	BA7-063
$\begin{aligned} & \text { D-G39/K39 } \\ & \text { D-A3 } \square / A 44 \end{aligned}$	BMB2-032	BMB2-040	BMB1-050	BMB1-063	BMB1-080	BMB1-100
D-F5 $\square / J 59$ D-F5 \square W/J59W D-F59F D-F5BA D-F5NT D-A5 $\square /$ A6 \square D-A59W	BT-03	BT-03	BT-05	BT-05	BT-06	BT-06
D-P4DW	BMB3T-040	BMB3T-040	BMB3T-050	BMB3T-050	BMB3T-080	BMB3T-080
$\begin{aligned} & \text { D-Y59 } \square / Y 69 \square \\ & \text { D-Y7P/Y7PV } \\ & \text { D-Y7 } \square W \\ & \text { D-Y7 } \square W V \\ & \text { D-Y7BA } \\ & \text { D-Z7 } \square / Z 80 \end{aligned}$	BMB4-032	BMB4-032	BMB4-050	BMB4-050	BA4-063	BA4-063

- Mounting example for D-A9 $\square(\mathrm{V})$, M9 $\square(\mathrm{V})$, M9 $\square \mathrm{W}(\mathrm{V})$, M9 $\square \mathrm{A}(\mathrm{V})$

[Stainless Steel Mounting Screw]

The following stainless steel mounting screw kit (including set screws) is available. Use it in accordance with the operating environment. (Since the auto switch mounting bracket is not included, order it separately.)

BBA1: For D-A5/A6/F5/J5

* For details on BBA1, refer to the Web Catalog or Best Pneumatics.

The D-F5BA auto switch is set on the cylinder with the stainless steel screws above when shipped from factory.
When only an auto switch is shipped independently, the BBA1 is attached.

* When using the $\mathrm{D}-\mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$ or Y7BA, please do not use the iron set screws included with the auto switch mounting bracket (BMB5-032, BA7- $\square \square \square$, BMB4- $\square \square \square$, BA4- $\square \square \square$) shown above, instead order the set of stainless steel set screws (BBA1), and please use the stainless steel set screws ($\mathrm{M} 4 \times 6 \mathrm{~L}$) included in BBA1.

Operating Range

	[mm]					
Auto switch model	Bore size					
	32	40	50	63	80	100
$\begin{aligned} & \text { D-M9 } \square / \text { M9 } \square V \\ & \text { D-M9 W/M9 } \square \text { WV } \\ & \text { D-M9 } \square \text { A/M9 AV } \end{aligned}$	4	4.5	5	6	6	6
D-A9■/A9 \square V	7	7.5	8.5	9.5	9.5	10.5
$\begin{aligned} & \text { D-Y59 } \square \text { /Y69 } \\ & \text { D-Y7P/Y7 } \square V \\ & \text { D-Y7 } \square W / Y 7 \square W V \\ & \text { D-Y7BA } \end{aligned}$	5.5	5.5	7	7.5	6.5	5.5
D-Z7口/Z80	7.5	8.5	7.5	9.5	9.5	10.5
D-F5 $\square / J 59$ D-F5 \square W/J59W D-F5BA/F5NT D-F59F	3.5	4	4	4.5	4.5	4.5
D-A5 $\square /$ A6 \square	9	9	10	11	11	11
D-A59W	13	13	13	14	14	15
D-G39/K39	9	9	9	10	10	11
D-A3口/A44	9	9	10	11	11	11
D-P4DW	4	4	4	4.5	4	4.5

* Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately $\pm 30 \%$ dispersion) and may change substantially depending on the ambient environment.

C96 Series

Type	Part no.	Electrical entry	Features
Solid state	D-M9NV, M9PV, M9BV	Grommet (Perpendicular)	-
	D-Y69A, Y69B, Y7PV		
	D-M9NWV, M9PWV, M9BWV		Diagnostic indication (2-color indicator)
	D-Y7NWV, Y7PWV, Y7BWV		
	D-M9NAV, M9PAV, M9BAV		Water-resistant (2-color indicator)
	D-Y59A, Y59B, Y7P	Grommet (In-line)	-
	D-F59, F5P, J59		
	D-Y7NW, Y7PW, Y7BW		Diagnostic indication (2-color indicator)
	D-F59W, F5PW, J59W		
	D-F5BA, Y7BA		Water-resistant (2-color indicator)
	D-F5NT		With timer
	D-P5DW		Magnetic field resistant (2-color indicator)
Reed	D-A93V, A96V	Grommet (Perpendicular)	-
	D-A90V		Without indicator light
	D-A67, Z80	Grommet (In-line)	
	D-A53, A56, Z73, $\mathbf{Z 7 6}$		-
Normally closed ($\mathrm{NC}=\mathrm{b}$ contact) solid state auto switches ($\mathrm{D}-\mathrm{F9G} / \mathrm{F9H} / \mathrm{Y} 7 \mathrm{G} / \mathrm{Y} 7 \mathrm{H}$) are also available. For details, refer to the Web Catalog or Best Pneumatics. With pre-wired connector is also available for solid state auto switches. For details, refer to the Web Catalog or Best Pneumatics.			

C96 Series

How to Mount and Move the Auto Switch

Mounting Bracket Tie-rod Mounting Type

<Applicable Auto Switch>	
Solid state switch ... D-M9N(V), D-M9P(V), D-M9B(V)	
	D-M9NW(V), D-M9PW(V), D-M9BW(V)
	D-M9NA(V), D-M9PA(V), D-M9BA(V)
Reed switch D-A90(V), A93(V), A96(V)

How to Mount and Move the Auto Switch

1. Fix it to the detecting position with a set screw by installing an auto switch mounting bracket in cylinder tie-rod and letting the bottom surface of an auto switch mounting bracket contact the cylinder tube firmly.
2. Fix it to the detecting position with a set screw (M4). (Use a hexagon wrench.)
3. Fit an auto switch into the auto switch mounting groove to set it roughly to the mounting position for an auto switch.
4. After confirming the detecting position, tighten up the mounting screw (M2.5 $\times 0.45 \times 4 \mathrm{~L}$) attached to an auto switch, and secure the auto switch.
5. When changing the detecting position, carry out in the state of 3 .

* To protect auto switches, ensure that main body of an auto switch should be embedded into auto switch mounting groove with a depth of 15 mm or more.
Set the tightening torque of a hexagon socket head set screw (M4) to be 1.0 to 1.2 N.m.
* When tightening an auto switch mounting screw (M2.5), use a watchmaker's screwdriver with a grip diameter of 5 to 6 mm .
Also, set the tightening torque to be 0.05 to $0.15 \mathrm{~N} \cdot \mathrm{~m}$. As a guide, turn 90° from the position where it comes to feel tight.

Auto Switch Mounting Bracket Part No. (Including Bracket, Set Screw)

Applicable bore size $[\mathrm{mm}]$					
$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
BMB5	BMB5	BA7	BA7	BA7	BA7
-032	-032	-040	-040	-063	-063

* When using the $\mathrm{D}-\mathrm{M} 9 \square \mathrm{~A}(\mathrm{~V})$, please order stainless steel screw set BBA1 separately (page 184), and use the stainless steel set screws, after selecting set screws of the appropriate length for the cylinder series-as shown in the table above.
Color or gloss differences in the metal surfaces have no effect on metal performance.
The special properties of the chromate (trivalent) applied to the main body of the auto switch mounting bracket for BA7- \square and BMB5- \square result in differences in coloration depending on the production lot, but these have no adverse impact on corrosion resistance.

<Applicable Auto Switch>

Solid state switch ... D-G39, D-K39
Reed switch \qquad D-A33, D-A34, D-A44

How to Mount and Move the Auto Switch D-A3 $\square, D-G 3 / K 3$ type

1. Loosen the auto switch mounting screws at both sides to pull down the hook.
2. Put an auto switch mounting band on the cylinder tube and set it at the auto switch mounting position, and then hook the band.
3. Screw lightly the auto switch mounting screw (M5 x $0.8 \times 16 \mathrm{~L}$).
4. Set the whole body to the detecting position by sliding, tighten the mounting screw ($\mathrm{M} 5 \times 0.8 \times 16 \mathrm{~L}$) to secure the auto switch. (The tightening torque should be about 2 to $3 \mathrm{~N} \cdot \mathrm{~m}$.)
5. When changing the detecting position, carry out in the state of 3 .

Auto Switch Mounting Bracket Part No. (Band)

Applicable bore size $[\mathrm{mm}]$					
$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
BMB2	BMB2	BMB1	BMB1	BMB1	BMB1
-032	-040	-050	-063	-080	-100

<Applicable Auto Switch>
Solid state switch ... D-P4DW

How to Mount and Move the Auto Switch

1. Slightly screw the hexagon socket head cap screw ($\mathrm{M} 4 \times 0.7 \times 8 \mathrm{~L}$) into the M4 tapped portion of auto switch mounting bracket. (2 locations) Use caution that the tip of the hexagon socket head cap screw should not stick out to the concave portion of auto switch mounting bracket.
2. Put a hexagon socket head cap screw ($\mathrm{M} 3 \times 0.5 \times 14 \mathrm{~L}$) through the auto switch's through-hole (2 locations), and then push it down into the M3 tapped part on the auto switch mounting bracket while turning it lightly.
3. Place the concave part of the auto switch mounting bracket into the cylinder tie-rod, and slide the auto switch mounting bracket in order to set roughly to the detecting position.
4. After reconfirming the detecting position, tighten the M3 mounting screw to secure the auto switch by making the bottom face of auto switch attached to the cylinder tube. (Tightening torque of M3 screw should be 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$.)
5. Tighten up M4 screw of auto switch mounting bracket to secure the auto switch mounting bracket. (Ensure that tightening torque of M4 screw should be set 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.)

Auto Switch Mounting Bracket Part No. (Including Bracket, Screw)

Applicable bore size $[\mathrm{mm}]$					
$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
BMB3T	BMB3T	BMB3T	BMB3T	BMB3T	BMB3T
-040	-040	-050	-050	-080	-080

<Applicable Auto Switch>

Solid state switch ... D-Y59A, Y69 ${ }_{B}^{A}$, D-Y7P(V) D-Y7NW(V), Y7PW(V), Y7BW(V) D-Y7BA

Reed switch \qquad D-Z73, Z76, Z80

How to Mount and Move the Auto Switch

* When tightening an auto switch mounting screw, use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm .
Also, set the tightening torque to be 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$.
As a guide, turn 90° from the position where it comes to feel tight. Set the tightening torque of a hexagon socket head set screw (M4 $\mathbf{x} 0.7 \times 6 \mathrm{~L}$) to be 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.

1. Fix it to the detecting position with a set screw by installing an auto switch mounting bracket in cylinder tie-rod and letting the bottom surface of an auto switch mounting bracket contact the cylinder tube firmly. (Use a hexagon wrench.)
2. Fit an auto switch into the auto switch mounting groove to set it roughly to the mounting position for an auto switch.
3. After confirming the detecting position, tighten up the mounting screw attached to an auto switch, and secure the auto switch.
4. When changing the detecting position, carry out in the state of 2.

* To protect auto switches, ensure that main body of an auto switch should be embedded into auto switch mounting groove with a depth of 15 mm or more.

Auto Switch Mounting Bracket Part No. (Including Bracket, Set Screw)

Applicable bore size $[\mathrm{mm}]$					
$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
BMB4	BMB4	BMB4	BMB4	BA4	BA4
-032	-032	-050	-050	-063	-063

*1 When using the D-Y7BA, please order stainless steel screw set BBA1 separately (page 184), and use the stainless steel set screws, after selecting set screws of the appropriate length for the cylinder series as shown in the table above.

Mounting Bracket Tie-rod Mounting Type

<Applicable Auto Switch>

Solid state switch ...
D-F59, D-F5P
D-J59, D-F5BA
D-F59W, D-F5PW, D-J59W
D-F59F, D-F5NT
Reed switch
D-A53, D-A54, D-A56, D-A64, D-A67
D-A59W

1. Fix the auto switch on the auto switch mounting bracket with the auto switch mounting screw (M4) and install the set screw (M4).
2. Fit the auto switch mounting bracket into the cylinder tie-rod and then fix the auto switch at the detecting position with a set screw (M4). (Be sure to put the auto switch on the surface of cylinder tube.) (Use a hexagon wrench.)
3. When changing the detecting position, loosen the set screw to move the auto switch and then re-fix the auto switch on the cylinder tube. (Tightening torque of M4 screw should be 1.0 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$.)

Auto Switch Mounting Bracket Part No. (Including Bracket, Screw, Set Screw)

Applicable bore size $[\mathrm{mm}]$						
$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	
BT-03	BT-03	BT-05	BT-05	BT-06	BT-06	

The following stainless steel mounting screw kit (including set screws) is available. Use it in accordance with the operating environment. (Since the auto switch mounting bracket is not included, order it separately.)

BBA1: For D-A5/A6/F5/J5
The D-F5BA auto switch is set on the cylinder with the stainless steel screws above when shipped from factory.
When only an auto switch is shipped independently, the BBA1 is attached.

Stainless Steel Mounting Screw Set

Part no.	Contents				Applicable auto switch mounting bracket part no.	Applicable auto switch
	No.	Description	Size	Q'ty		
BBA1	1	Auto switch mounting screw	$\mathrm{M} 4 \times 0.7 \times 8 \mathrm{~L}$	1	BT-प口	
	2	Set screw	M $4 \times 0.7 \times 6 \mathrm{~L}$	2	BT-03, BT-04, BT-05 BT-06, BT-08, BT-12	$\begin{aligned} & \text { D-A5, A6 } \\ & \text { D-F5. J5 } \end{aligned}$
					BA4-040, BA4-063, BA4-080 BMB4-032, BMB4-050	$\begin{aligned} & \hline \mathrm{D}-\mathrm{Z7}, \mathrm{Z8} \\ & \mathrm{D}-\mathrm{Y}, \mathrm{Y}, \mathrm{Y}, \mathrm{Y} \\ & \hline \end{aligned}$
					$\begin{aligned} & \text { BMB5-032 } \\ & \text { BA7-040, BA7-063, BA7-080 } \end{aligned}$	$\begin{aligned} & \hline \text { D-A9 } \\ & \text { D-M9 } \end{aligned}$
	3	Set screw	$\mathrm{M} 4 \times 0.7 \times 8 \mathrm{~L}$	2	BT-16, BT-18A, BT-20	$\begin{aligned} & \text { D-A5, A6 } \\ & \text { D-F5, J5 } \end{aligned}$
					$\begin{aligned} & \text { BS4-125, BS4-160 } \\ & \text { BS4-180, BS4-200 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{D}-\mathrm{Z7}, \mathrm{Z8} \\ & \mathrm{D}-\mathrm{Y} 5, \mathrm{Y} 6, \mathrm{Y} 7 \end{aligned}$
					$\begin{aligned} & \text { BS5-125, BS5-160 } \\ & \text { BS5-180, BS5-200 } \end{aligned}$	$\begin{aligned} & \hline \text { D-A9 } \\ & \text { D-M9 } \end{aligned}$

* Use the set screw after selecting the appropriate length for the auto switch mounting bracket.
(Example) When using the BA7-040, select the $6 L$ type. $8 L$ type is not required.

Prior to Use
 Auto Switch Connections and Examples

Sink Input Specifications

3-wire, NPN

2-wire

Source Input Specifications

3-wire, PNP

2-wire

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Examples of AND (Series) and OR (Parallel) Connections

* When using solid state auto switches, ensure the application is set up so the signals for the first 50 ms are invalid.

3-wire AND connection for NPN output

(Using relays)

3-wire AND connection for PNP output (Using relays)

2-wire AND connection

When two auto switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up when both of the auto switches are in the ON state. Auto switches with a load voltage less than 20 V cannot be used.

Load voltage at $\mathrm{ON}=$ Power supply voltage -
Residual voltage $\times 2$ pcs.
$=24 \mathrm{~V}-4 \mathrm{~V} \times 2$ pcs.
$=16 \mathrm{~V}$
Example: Power supply is 24 VDC Internal voltage drop in auto switch is 4 V .
(Performed with auto switches only)

(Performed with auto switches only)

2-wire OR connection

Load voltage at OFF = Leakage current $\mathrm{x} 2 \mathrm{pcs} . \mathrm{x}$

$$
\begin{aligned}
& \text { Load impedance } \\
= & 1 \mathrm{~mA} \times 2 \text { pcs. } \times 3 \mathrm{k} \Omega \\
= & 6 \mathrm{~V}
\end{aligned}
$$

Example: Load impedance is $3 \mathrm{k} \Omega$.

3-wire OR connection for NPN output

3-wire OR connection for PNP output

(Reed)
Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of auto switches in the ON state, the indicator lights may sometimes grow dim or not light up, due to the dispersion and reduction of the current flowing to the auto switches. Leakage current from auto switch is 1 mA .

C96 Series
 Simple Specials/Made to Order

Please contact SMC for detailed specifications, delivery, and prices.

Simple Specials
The following special specifications can be ordered as a simplified Made-to-Order.

[^6]C96 Series
Simple Specials
The following changes are dealt with through the Simple Specials System.

> For details, refer to the Simple Specials in the Web Catalog.
> http://www.smcworld.com

1 Change of Rod End Shape

Applicable Series

Description	Model	Action	Symbol for change of rod end shape
Standard type	C96S	Double acting, Single rod	XA0 to 30
	C96S-W	Double acting, Double rod	XA0 to 30
Smooth type	C96Y	Double acting, Single rod	XA0 to 30

\triangle Precautions

1. SMC will make appropriate arrangements if no dimension, tolerance, or finish instructions are given in the diagram.
2. Standard dimensions marked with "*" will be as follows to the rod diameter (D). Enter any special dimension you require.
$\mathrm{D} \leq 6 \rightarrow \mathrm{D}-1 \mathrm{~mm}, 6<\mathrm{D} \leq 25 \rightarrow \mathrm{D}-2 \mathrm{~mm}, \mathrm{D}>25 \rightarrow \mathrm{D}-4 \mathrm{~mm}$
3. In the case of the double rod type and single acting retraction type, enter the dimensions when the rod is retracted. 4. Only one side of a double rod can be manufactured.
4. "A0" is the same shape as the standard type. (The specifications of AO are that only dimensions A and H are changed from the standard type.)

Symbol: A30

The position for mounting the trunnion pivot bracket on the cylinder can be moved from the standard mounting position to any required position．

Applicable Series

Description	Model	Action
Standard type	C96S	Double acting，Single rod
	C96S－W	Double acting，Double rod
Smooth type	$\mathbf{C 9 6 Y}$	Double acting，Single rod

\triangle Precautions

1．Specify＂$Z+1 / 2$ stroke＂in the case the trunnion bracket position is not $-\mathrm{XC} 14 \mathrm{~A}, \mathrm{~B}$ or trunnion is not a center trunnion．
2．SMC will make appropriate arrangements if no dimension，tolerance，or finish instructions are given in the diagram．
3．The possible range of trunnion bracket mounting position is indicated in the table below．
4．Some trunnion mounting positions do not allow auto switch mounting． Please consult with SMC for more information．

C96 Series

C96 Series［mm］						
	$\mathbf{Z}+1 / 2$ stroke					
	For－ $\mathrm{XC1}$	For－XC14B	For－XC14		Reference：Standard （Center trunnion）	Minimum stroke
	For－XC14A		Minimum	Maximum		
32	85.4	104.6 ＋Stroke	85.9	104.1 ＋Stroke	$95+0.5$ stroke	0
40	97.6	115.4 ＋Stroke	98.1	114.9 ＋Stroke	$106.5+0.5$ stroke	
50	112	132 ＋Stroke	112.5	$131.5+$ Stroke	$122+0.5$ stroke	
63	121.6	137.4 ＋Stroke	122.1	136.9 ＋Stroke	$129.5+0.5$ stroke	
80	141.4	158.6 ＋Stroke	141.9	158.1 ＋Stroke	$150+0.5$ stroke	
100	153.9	166.1 ＋Stroke	154.4	165.6 ＋Stroke	$160+0.5$ stroke	5

C96 Series

Made to Order
Please contact SMC for detailed dimensions, specifications, and lead times.

1 Heat-resistant Cylinder (-10 to $150^{\circ} \mathrm{C}$)

Air cylinder which changed the seal material and grease, so that it could be used even at higher temperature up to $150^{\circ} \mathrm{C}$.

Applicable Series

Description	Model	Action
Standard type	C96S	Double acting, Single rod
	C96S-W	Double acting, Double rod

How to Order

Specifications

Ambient temperature range	-10 to $150^{\circ} \mathrm{C}$
Seal material	Fluororubber
Grease	Heat-resistant grease
Specifications other than above and external dimensions	Same as standard type

* Operate without lubrication from a pneumatic system lubricator.
* Please contact SMC for details on the maintenance intervals for this cylinder, which differ from those of the standard cylinder.
* In principle, it is impossible to make built-in magnet type and the one with auto switch.
But, as for the one with auto switch, and the heat-resistant cylinder with heat-resistant auto switch, since it will be differed depending on the series, please contact SMC.

\. Warning

* Piston speed is ranged from 50 to $500 \mathrm{~mm} / \mathrm{s}$.

Precautions

Be aware that smoking cigarettes etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

2 Cold-resistant Cylinder (-40 to $70^{\circ} \mathrm{C}$)

Air cylinder which changed the seal material and grease, so that it could be used even at lower temperature down to $-40^{\circ} \mathrm{C}$.

Applicable Series

Description	Model	Action	
Standard type	C96S	Double acting, Single rod	Note
	Excluding with auto switch. Mounting bracket: Basic type only		
Minimum operating pressure 0.2 MPa			

How to Order

Specifications

Ambient temperature range	-40 to $70^{\circ} \mathrm{C}$
Seal material	Low nitrile rubber
Grease	Cold-resistant grease
Auto switch	Not mountable
Dimensions	Same as standard type
Specifications other than above	Same as standard type

4. Warning

Precautions

Be aware that smoking cigarettes etc. after your hands have come into contact with the grease used in this cylinder can create a gas that is hazardous to humans.

* Operate without lubrication from a pneumatic system lubricator.
* Use dry air which is suitable for heatless air dryer etc. not to cause the moisture to be frozen.
* Please contact SMC for details on the maintenance intervals for this cylinder, which differ from those of the standard cylinder.
* Mounting auto switch is impossible.

Symbol
 3 With Heavy Duty Scraper -XC4

It is suitable for using cylinders under the environment, where there are much dusts in a surrounding area by using a heavy duty scraper on the wiper ring, or using cylinders under earth and sand exposed to the die-casted equipment, construction machinery, or industrial vehicles.

Applicable Series

Description	Model	Action
Standard type	C96S	Double acting, Single rod
	C96S-W	Double acting, Double rod

How to Order

Specifications: Same as standard type Dimensions: Same as standard type

\triangle Caution

Do not replace heavy duty scrapers.
Since heavy duty scrapers are press-fit, do not replace the cover only, but rather the entire rod cover assembly.

Symbol
4 Tie-rod, Tie-rod Nut, etc. Made of Stainless Steel
When using in locations where the rust generation or corrosion likelihood exists, the standard parts material have been partly changed to the stainless steel.

Applicable Series

Description	Model	Action
Standard type	$\mathbf{C 9 6 S}$	Double acting, Single rod
	$\mathbf{C 9 6 S}$	W
Smooth type	$\mathbf{C 9 6 Y}$	Double acting, Double rod

How to Order

Specifications

Parts changed to stainless steel	Tie-rod, Tie-rod nut, Mounting bracket nut, Spring washer, Lock nut
Specifications other than above	Same as standard type for each series
Dimensions	Same as standard type for each series

Two cylinders are constructed as one cylinder in a back-to-back configuration allowing the cylinder stroke to be controlled in three steps.

Applicable Series

Description	Model	Action	Note
Standard type	C96S	Double acting, Single rod	Excluding clevis and trunnion types
Smooth type	C96Y	Double acting, Single rod	Excluding clevis and trunnion types

How to Order

Dual stroke cylinder

Specifications

Maximum manufacturable stroke $[\mathrm{mm}]$
1000

Function

Dimensions (Dimensions other than below are the same as standard type.)

Bore size $[\mathrm{mm}]$	$\mathbf{L 8}$	$\mathbf{Z Z}$	NA	NB	$\mathbf{G C}$
$\varnothing \mathbf{3 2}$	198	294	67.8	10	36
$\varnothing \mathbf{4 0}$	220	328	75.2	10	38
$\varnothing \mathbf{5 0}$	222	360	74	10	38
$\varnothing \mathbf{6 3}$	252	390	87.2	10	42
$\varnothing \mathbf{8 0}$	270	442	90.8	14	46
$\varnothing \mathbf{1 0 0}$	290	472	99.8	14	50

6 Dual Stroke Cylinder/Single Rod Type
 Symbol
 -XC11

Two cylinders can be integrated by connecting them in line, and the cylinder stroke can be controlled in two stages in both directions.

Applicable Series

Description	Model	Action	Note
Standard type	C96S	Double acting, Single rod	Excluding trunnion type

How to Order

Specifications: Same as standard type

Dual stroke cylinder/Single rod typed

Function

Functional description of dual stroke cylinder

1) Initial state (0 stroke position)
2) 1 st stage: Stroke A operation When the air pressure is supplied from the A port, the rod operates the stroke A.
3) 2nd stage: Stroke B-A operation Following the 1st stage, when the air pressure is supplied from the C port, the rod operates the stroke B-A.
4) Cylinder retraction When the air pressure is supplied from the B port, the rod retracts completely.

Stroke A or Stroke B operation can be made individually.

Stroke A operation

1) Initial state (0 stroke position)
2) Operation

When the air pressure is supplied from the A port, the rod operates the stroke A .

Stroke B operation

1) Initial state (0 stroke position)
2) Operation When the air pressure is supplied from the C port, the rod operates the stroke B.

Double output is possible.

1) Initial state (0 stroke position)

Precautions

\triangle Caution

1. Do not supply air until the cylinder is fixed with the attached bolt.
2. If air is supplied without securing the cylinder, the cylinder could lurch, posing the risk of bodily injury or damage to the peripheral equipment.
2) Double output When the air pressure is supplied to the A and C ports at the same time, the double output can be obtained in the stroke A range.

Dimensions (Dimensions other than below are the same as standard type.)

Bore size $[\mathrm{mm}]$	L8	ZZ	NA	NB	GC
$\varnothing \mathbf{~ 3 2}$	199	251	67.2	10	35.4
$\varnothing \mathbf{4 0}$	221	279	74.6	10	37.4
$\varnothing 50$	223	296	73.4	10	37.4
$\varnothing 63$	253	326	86.6	10	41.4
$\varnothing 80$	271	361	90.2	14	45.4
$\varnothing \mathbf{1 0 0}$	291	386	99.2	14	49.4

Applicable Series

Description	Model	Action
Standard type	C96S	Double acting, Single rod
	C96S-W	Double acting, Double rod

How to Order

Specifications

Seal material	Fluororubber
Ambient temperature range	With auto switch: $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}($ No freezing)*1 Without auto switch: $-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (No freezing)
Specifications other than above and external dimensions	Same as standard type

*1 Please contact SMC, as the type of chemical and the operating temperature may not allow the use of this product.
Cylinders with auto switches can also be produced; however, auto switch related parts (auto switch units, mounting brackets, built-in magnets) are the same as standard products. Before using these, please contact SMC regarding their suitability for the operating environment.

It gets rid of frost, ice, weld spatter, cutting chips adhered to the piston rod, and protects the seals etc.

Applicable Series

Description	Model	Action
Standard type	C96S	Double acting, Single rod
	C96S-W	Double acting, Double rod

How to Order

Specifications: Same as standard type
Dimensions: Same as standard type

9 Made of Stainless Steel (Combination of -XC7 and -XC68)

Suitable for the cases it is likely to generate rust by being immersed in the water and corrosion.

Applicable Series

Description	Model	Action
Standard type	C96S	Double acting, Single rod
	C96S-W	Double acting, Double rod
Smooth type	C96Y	Double acting, Single rod

* There is a maximum stroke limit for C96 cylinder.
Maximum Stroke

Double acting, Single rod	Double acting, Double rod
$ø 32: 1000$	1000
$\varnothing 40$ to $\varnothing 100: 1700$	(Same as standard type)

Specifications

Parts changed to stainless steel	Piston rod, Rod end nut, Tie-rod, Tie-rod nut, Mounting bracket nut, Spring washer, Lock nut
Other specifications and external dimensions	Same as standard type

How to Order

10 Made of Stainless Steel (With Hard Chrome Plated Piston Rod)

-XC68

Suitable for the cases it is likely to generate rust by being immersed in the water and corrosion.

Applicable Series

Description	Model	Action
Standard type	C96S	Double acting, Single rod
	C96S-W	Double acting, Double rod
Smooth type	C96Y	Double acting, Single rod

* There is a maximum stroke limit.

Maximum Stroke
[mm]

Double acting, Single rod	Double acting, Double rod
$\varnothing 32: 1000$	1000
$\varnothing 40$ to $\varnothing 100: 1700$	(Same as standard type)

Specifications

Parts changed to stainless steel	Piston rod, Rod end nut
Other specifications and external dimensions	Same as standard type

How to Order

C96 Series

11 Spatter-resistant Coil Scraper, Lube-retainer, Grease for Welding (Piston rod: Stainless steel 304)
Reduces spatter adhesion and improves durability by the use of the coil scraper, Lube-retainer and grease for welding.

Applicable Series

Description	Model	Action
Standard type	C96S	Double acting, Single rod
	C96S-W	Double acting, Double rod

How to Order

Specifications

Piston rod	Stainless steel 304 (With hard chrome plated)
Scraper	With coil scraper, With Lube-retainer
Grease	Grease for welding
Other specifications and external dimensions	Same as standard type

12 Spatter-resistant Coil Scraper, Lube-retainer, Grease for Welding (Piston rod: S45C)

Reduces spatter adhesion and improves durability by the use of the coil scraper, Lube-retainer and grease for welding.
Applicable Series

Description	Model	Action
Standard type	C96S	Double acting, Single rod
	C96S-W	Double acting, Double rod

How to Order

Specifications

Piston rod	S45C (With hard chrome plated)
Scraper	With coil scraper, With Lube-retainer
Grease	Grease for welding
Other specifications and external dimensions	Same as standard type

C96 Series
 Specific Product Precautions

Be sure to read this before handling the products．Refer to page 219 for safety instructions． For actuator and auto switch precautions，refer to the＂Handling Precautions for SMC Products＂and the＂Operation Manual＂on the SMC website：http：／／www．smcworld．com

Adjustment

© Warning

1．Do not open the cushion valve more than the allowable number of rotations（following table）．
Although the cushion valve is caulked as a retaining mechanism，do not open the cushion valve more than the allowable number of rotations．If air is supplied and operation started without confirming the above condition，the cushion valve may be ejected from the cover．
The allowable number of rotations refers to the number of rotations until the restrictor of the cushion valve is completely opened from the completely closed state．
2．Keep the screwing torque and the unscrewing torque of the cushion valve to the allowable torque or below（following table）．
If a screwing torque or unscrewing torque beyond the allowable torque is applied，the valve will be damaged when the valve is closed completely or exceeds the retaining mechanism when the valve is opened completely，which will dislocate the engagement of the screw and eject the valve．

Bore size $[\mathrm{mm}]$	Cushion valve width across flats	Hexagon wrench	Alowable number of rotations	Allowable torque $[\mathrm{N} \cdot \mathrm{m}]$
$\mathbf{3 2 , 4 0}$	2	JIS 4648 Hexagon wrench key 2	4	0.02
$\mathbf{5 0 , 6 3}$	2	JIS 4648 Hexagon wrench key 2	4.5	0.02
$\mathbf{8 0 , 1 0 0}$	3	JIS 4648 Hexagon wrench key 3	5.5	0.06

3．Be certain to activate the air cushion at the stroke end．
When the air cushion is inactivated，if the allowable kinetic energy exceeds the value on page 163，the piston rod assembly or the tie－rod may be damaged．Set the air cushion to valid when operating the cylinder．

\triangle Caution

1．When replacing brackets，use the hexagon wrenches shown below．

Bore size［mm］	Width across flats	Tightening torque［N．m］
$\mathbf{3 2 , 4 0}$	4	4.8
$\mathbf{5 0 , 6 3}$	5	10.4
$\mathbf{8 0}, \mathbf{1 0 0}$	6	18.2

[^0]: *1 Bore size 125 is the same as the previous model. For details, refer to the Web Catalog.

[^1]: * Supplied with 4 mounting screws, clevis pin, and clevis pin bracket.

[^2]: *1 Water-resistant type auto switches can be mounted on the above models, but SMC cannot guarantee water resistance.
 Please contact SMC regarding water-resistant types with the above model numbers.

[^3]: * Do not use a rod end (or floating joint) together with a single clevis with a ball joint (or clevis pivot bracket with a ball joint).
 * Refer to pages 169 to 172 for dimensions and part numbers of the accessories.

[^4]: W: Load [N] Po: Operating pressure [MPa] P1, P2: Reduced pressure [MPa] a: Rod side piston area [mm²] A: Head side piston area [mm²]

[^5]: * $\mathrm{n}=3,4,5 \ldots$

[^6]: *1 The products with an auto switch are not compatible.

