Air Cylinder

CG3 Series

ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

Compact with a new construction! New release with full functions

 Minimized with shorter total length!Space saving; contributes to downsizing of equipment.
-

CG3 Series

Female rod end available as standard

Applications expanded by making it possible to select either male or female thread within the standard model.

2-color indicator solid state auto switch mountable

Possible to confirm whether the position is appropriate at a glance.
Increases effectiveness of adjustment time.

A green light lights up at the optimum operating range.

Optimum operating range

Total length minimized

- The new structure has reduced the total length.
- Up to 37 mm shorter than CG1 series, making the product more compact.
- Integrated structure of head cover and tube

Comparison of the total length with CG1 series
Bore size (mm) Shortened by

* Compared with the basic type with male thread

Series Variations

Series	$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Standard stroke (mm)	Action	Rod	Mounting	Built-in magnet for auto switch	Rubber bumper	Auto switch
CG3	20	25 to 200	Double acting	Single rod	Basic, Foot, Flange, Clevis			D-M9 \square (W), D-A90
	25 to 63	25 to 300						
	80, 100							D-G5 \square (W), D-K59(W), D-B64

[^0]
Air Cylinder Short Type Standard: Double Acting, Single Rod CG3 Series
 $\varnothing 20, \varnothing 25, \varnothing 32, \varnothing 40, \varnothing 50, \varnothing 63, \varnothing 80, \varnothing 100$

*1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
A water resistant type cylinder is recommended for use in an environment which requires water resistance. However, please contact SMC for water-resistant products of ø20 and ø25. *2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots . . .$. Nil (Example) M9NW
$1 \mathrm{~m} \ldots \quad \mathrm{M}$
* Solid state auto switches marked with " \bigcirc " are produced upon receipt of order.
$3 \mathrm{~m} \mathrm{L}$ (Example) M9NWL
$5 \mathrm{~m} \cdots \ldots \ldots . . \mathrm{Z}$ (Example) M9NWZ
None.......... N (Example) H7CN
* The D-G5 $\square / K 5 \square / B 5 \square / B 6 \square$ types cannot be mounted on the bore size ø40.
* Since there are other applicable auto switches than listed above, refer to page 376 for details.
* For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.

Symbol

Rubber bumper

Refer to pages 373 to 376 for cylinders with

 auto switches.- Auto switch proper mounting position (detection at stroke end) and its mounting height
- Minimum stroke for auto switch mounting
- Operating range
- Auto switch mounting brackets/Part no

Made to Order	Made to Order Click here for details
Symbol Specification - XA \square Change of rod end shape	

Specifications

Bore size (mm)		20	25	32	40	50	63	80	100
Action		Double acting, Single rod							
Lubrication		Not required (Non-lube)							
Fluid		Air							
Proof pressure		1.0 MPa							
Maximum operating pressure		0.7 MPa							
Minimum operating pressure		0.05 MPa							
Ambient and fluid temperature		Without auto switch: -10 to $70^{\circ} \mathrm{C}$ (No freezing)							
		With auto switch: -10 to $60^{\circ} \mathrm{C}$ (No freezing)							
Piston speed		50 to $1000 \mathrm{~mm} / \mathrm{s}$						30 to $700 \mathrm{~mm} / \mathrm{s}$	
Stroke length tolerance		+ ${ }_{0}^{1.4} \mathrm{~mm}$							
Cushion		Rubber bumper							
Mounting		Basic, Foot, Rod flange, Head flange, Clevis							
Allowable kinetic energy	Male rod end	0.2 J	0.29 J	0.46 J	0.84 J	1.4 J	2.38 J	4.13 J	6.93 J
	Female rod end	0.11 J	0.18 J	0.29 J	0.52 J	0.91 J	1.54 J	2.71 J	4.54 J

* Operate the cylinder within the allowable kinetic energy. Refer to page 368 for details.

Standard Strokes

Bore size (mm)	Standard stroke (mm) ${ }^{\text {Note) }}$
20	25, 50, 75, 100, 125, 150, 200
25	$25,50,75,100,125,150,200,250,300$
32	
40	
50	
63	
80	
100	

Note) Manufacture of intermediate strokes in 1 mm increments is possible. (Spacers are not used.)

Accessories

Mounting		Basic	Foot	Rod flange	Head flange	Clevis
Standard	Rod end nut (male thread)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Clevis pin	-	-	-	-	\bigcirc
Option	Single knuckle joint	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Double knuckle joint (with pin)*	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Pivoting bracket	-	-	-	-	\bigcirc

* A double knuckle joint pin and retaining rings are shipped together.
* For part numbers and dimensions, refer to page 372.

Mounting Brackets/Part No.

Mounting	Order	Bore size (mm)								Contents
bracket	qty.	20	25	32	40	50	63	80	100	
Foot	$\begin{gathered} \text { Note) } \\ 2 \end{gathered}$	CG-L020	CG-L025	CG-L032	CG3-L040	CG-L050	CG-L063	CG-L080	CG-L100	2 foots, 8 mounting bolts
Flange	1	CG3-F020	CG3-F025	CG-F032	CG3-F040	CG-F050	CG-F063	CG-F080	CG-F100	1 flange, 4 mounting bolts
Clevis	1	CG-D020	CG-D025	CG-D032	CG3-D040	CG-D050	CG-D063	CG-D080	CG-D100	1 clevis, 4 mounting bolts, 1 clevis pin, 2 retaining rings
Pivoting bracket	1	$\begin{aligned} & \text { CG-020- } \\ & 24 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { CG-025- } \\ & 24 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { CG-032- } \\ & 24 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { CG-040- } \\ & \text { 24A } \end{aligned}$	$\begin{aligned} & \text { CG-050- } \\ & \text { 24A } \end{aligned}$	$\begin{aligned} & \text { CG-063- } \\ & \text { 24A } \end{aligned}$	$\begin{aligned} & \text { CG-080- } \\ & 24 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { CG-100- } \\ & 24 \mathrm{~A} \end{aligned}$	1 pivoting bracket

Note) Order 2 foots per cylinder.

Theoretical Output

									Unit: N
Bore size D (mm)	Rod size d (mm)	Operating direction	Piston area (mm^{2})	Operating pressure (MPa)					
				0.2	0.3	0.4	0.5	0.6	0.7
20	8	OUT	314	62.8	94.2	125.6	157	188.4	219.8
		IN	264	52.8	79.2	105.6	132	158.4	184.8
25	10	OUT	491	98.2	147.3	196.4	245.5	294.6	343.7
		IN	412	82.4	123.6	164.8	206	247.2	288.4
32	12	OUT	804	160.8	241.2	321.6	402	482.4	562.8
		IN	691	138.2	207.3	276.4	345.5	414.6	483.7
40	14	OUT	1257	251.4	377.1	502.8	628.5	754.2	879.9
		IN	1103	220.6	330.9	441.2	551.5	661.8	772.1
50	18	OUT	1964	392.8	589.2	785.6	982	1178.4	1374.8
		IN	1709	341.8	512.7	683.6	854.5	1025.4	1196.3
63	18	OUT	3117	623.4	935.1	1246.8	1558.5	1870.2	2181.9
		IN	2863	572.6	858.9	1145.2	1431.5	1717.8	2004.1
80	22	OUT	5027	1005.4	1508.1	2010.8	2513.5	3016.2	3518.9
		IN	4646	929.2	1393.8	1858.4	2323	2787.6	3252.2
100	26	OUT	7854	1570.8	2356.2	3141.6	3927	4712.4	5497.8
		IN	7323	1464.6	2196.9	2929.2	3661.5	4393.8	5126.1

Weights

Bore size (mm)	20	25	32	40	50	63	80	100
Basic \quad Basic	0.09	0.14	0.20	0.32	0.66	0.92	1.75	2.74
Basic Long male rod end (G)	0.10	0.15	0.21	0.34	0.70	0.97	1.84	2.85
weight ${ }^{\text {F }}$ Female rod end (F)	0.08	0.12	0.19	0.29	0.60	0.85	1.61	2.53
Additional Foot	0.11	0.13	0.16	0.22	0.48	0.72	0.96	1.75
weight for \quad Flange	0.08	0.10	0.14	0.20	0.34	0.50	0.71	1.35
bracket	0.05	0.08	0.15	0.23	0.40	0.68	0.71	1.28
Pivoting bracket	0.08	0.09	0.17	0.25	0.44	0.80	0.98	1.75
Single knuckle joint	0.05	0.09	0.09	0.10	0.22	0.22	0.39	0.57
Double knuckle joint (with pin)	0.05	0.09	0.09	0.13	0.26	0.26	0.64	1.31
Additional weight per 50 mm of stroke	0.05	0.07	0.09	0.13	0.19	0.23	0.31	0.43
Additional weight for switch magnet	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.04

Calculation: (Example) CDG3FN20-100 (Built-in magnet, Flange type, ø20, 100 mm stroke)

- Basic weight .. 0.09 (Basic type, ø20)
- Additional weight for bracket 0.08 (Flange)
- Additional weight for stroke 0.05/50 mm
- Air cylinder stroke 100 mm
- Additional weight for switch magnet $\cdots . .0 .01$
$0.09+0.08+0.05 \times(100 / 50)+0.01=0.28 \mathrm{~kg}$

Mounting Procedure

Mounting procedure for clevis
Mounting procedure for rod end nut
Follow the procedures below when mounting a pivoting bracket on the clevis type.
$\varnothing 20$ to $\varnothing 63$

$\varnothing 80, \varnothing 100$

\triangle Caution

1. Tighten clevis bracket mounting bolts with the following proper tightening torque.
ø20: $1.5 \mathrm{~N} \cdot \mathrm{~m}, \varnothing 25$ to $\varnothing 32: 2.9 \mathrm{~N} \cdot \mathrm{~m}, \varnothing 40: 4.9 \mathrm{~N} \cdot \mathrm{~m}$
$\varnothing 50$: $11.8 \mathrm{~N} \cdot \mathrm{~m}, \varnothing 63$ to $\varnothing 80$: $24.5 \mathrm{~N} \cdot \mathrm{~m}, \varnothing 100$: $42.2 \mathrm{~N} \cdot \mathrm{~m}$
2. For the flange type and the foot type, mount the rod end nut so that distance t (clearance) will be 1 mm or more in order to prevent interference of the nut with the bracket when the rod is retracted.
3. The rod end nut (for male thread) should be mounted so that the hexagon part is on the rod end side. Apply the wrench to the hexagon part.

Allowable Kinetic Energy

Table (1) Max. Allowable Kinetic Energy
[J]

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Male rod end	0.2	0.29	0.46	0.84	1.4	2.38	4.13	6.93
Female rod end	0.11	0.18	0.29	0.52	0.91	1.54	2.71	4.54

Kinetic energy $E(\mathbf{J})=\left(\mathbf{m}_{1}+\mathbf{m}_{2}\right) \mathbf{V}^{2} \quad \mathbf{m}_{1}$: Mass of cylinder movable parts kg m_{2} : Load mass kg \mathbf{V} : Piston speed at the end m / s

Table (2) Mass of Cylinder Movable Parts:
At Each Rod End/Without Built-in Magnet/0 Stroke [g]

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Basic	30	54	74	121	254	297	603	935
Long male rod end (G)	36	64	89	146	300	343	683	1047
Female rod end (F)	23	40	62	91	184	226	462	728

* Mass of the rod end nut is included for the basic type and the long male rod end type (G).

Table (3) Additional Mass

Bore size (mm)	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Additional mass per 50 mmo o stroke	20	31	44	61	99	99	148	207
Switch magnet	4	4	9	13	14	22	24	35

Allowable Lateral Load at Rod End

* Do not apply a lateral load over the allowable range to the rod end when it is mounted horizontally.
Calculation: (Example) CDG3BN40-150
- Standard mass of movable parts: Table (2) Rod end [Basic], Bore size [40] 121 g
- Additional mass: Additional mass of stroke $61 \times 150 / 50=183 \mathrm{~g}$

Construction

With rubber bumper

Component Parts

No.	Description	Material	Note
1	Rod cover	Aluminum alloy	Hard anodized
2	Tube cover	Aluminum alloy	Hard anodized
3	Piston	Aluminum alloy	Chromated
4	Piston rod	Carbon steel*	Hard chrome plated*
5	Bushing	Bearing alloy	
6	Bumper A	Resin	
7	Bumper B	Resin	
8	Wear ring	Resin	
9	Rod end nut	Carbon steel	Nickel plated
10	Rod seal	NBR	
11	Piston seal	NBR	
12	Tube gasket	NBR	

Note) In the case of cylinders with auto switches, magnets are installed in the piston.

* The material for $\varnothing 20$ and ø25 cylinders with auto switches is made of stainless steel.

Replacement Parts/Seal Kit

Bore size (mm)	Kit no.	Contents
20	CG3N20-PS	Set of the nos.(10), (11), (12)
25	CG3N25-PS	
32	CG3N32-PS	
40	CG3N40-PS	

Note) As sizes $\varnothing 50$ and larger cannot be disassembled, the seal cannot be replaced.
Note) Refer to the following for disassembly/ replacement. Order with a part number for each type and bore size.

* The seal kit includes a grease pack (10 g).

Order with the following part number when only
the grease pack is needed.
Grease pack part no.: GR-S-010 (10 g)

Air Cylinder Short Type Standard: Double Acting, Single Rod

Dimensions
Basic: CG3BN Bore size - Stroke
With rubber bumper

Female rod end
Long male rod end
MM

Female Rod End					(mm)
Bore size (mm)	Standard stroke	A1	H	MM	ZZ
20	Up to 200	8	13	M 4×0.7	72
25	Up to 300	8	14	M 5×0.8	76
32	Up to 300	12	14	M6x 1	78
40	Up to 300	13	15	M8x 1.25	79
50	Up to 300	18	16	M10 1.5	102
63	Up to 300	18	16	M10 1.5	102
80	Up to 300	21	19	M14 1.5	126
100	Up to 300	25	22	M16 $\times 1.5$	130

Long Male Rod End *2 (mm)

Bore size $(\mathbf{m m})$	Standard stroke	\mathbf{A}	$\mathbf{A L}$	\mathbf{H}	$\mathbf{Z Z}$
$\mathbf{2 0}$	Up to 200	18	15.5	35	94
$\mathbf{2 5}$	Up to 300	22	19.5	40	102
$\mathbf{3 2}$	Up to 300	22	19.5	40	104
$\mathbf{4 0}$	Up to 300	30	27	50	114
$\mathbf{5 0}$	Up to 300	35	32	58	144
$\mathbf{6 3}$	Up to 300	35	32	58	144
$\mathbf{8 0}$	Up to 300	40	37	71	178
$\mathbf{1 0 0}$	Up to 300	40	37	$\mathbf{7 1}$	$\mathbf{1 7 9}$

Basic

Bore size (mm)	Standard stroke	A	AL	B1	C	D	E	F	GA	GB	H	H1	I	J	KA	MM	NA	P	S	ZZ
20	Up to 200	14.5	12	13	14	8	12	2	12	6	20	5	26	M4 x 0.7 depth 7	With aross flats 6 lergin 3.5	M8x 1.25	24	M 5×0.8	57	79
25	Up to 300	17.5	15	17	16.5	10	14	2	12.5	7	23	6	31	M5 $\times 0.8$ depth 7.5	With acrossflats 8 lemght 3.5	M10 $\times 1.25$	29	M 5×0.8	60	85
32	Up to 300	17.5	15	17	20	12	18	2	11	7.5	23	6	38	M5 $\times 0.8$ depth 8	Wiath accoss flais 10 lengt 3.5	M10 $\times 1.25$	35.5	Rc1/8	62	87
40	Up to 300	23.5	20.5	19	26	14	25	2	10.5	7.5	29	8	47	M6x 1 depth 10	Wiath accoss flats 12 engigh 3.5	M14 $\times 1.5$	44	Rc1/8	62	93
50	Up to 300	29	26	27	32	18	30	2	15	12	35	11	58	M8 x 1.25 depth 16	Wioth accoss flais 16 length 4.5	M18 $\times 1.5$	55	Rc1/4	84	121
63	Up to 300	29	26	27	38	18	32	2	15	12	35	11	72	M10 1.5 depth 16	Wiath accosss flais 16 lenght 4.5	M18 $\times 1.5$	69	Rc1/4	84	121
80	Up to 300	35.5	32.5	32	50	22	40	3	17	16	44	13	89	M10 $\times 1.5$ depth 22	Wiath accoss liais 19 lengt 4.5	M 22×1.5	80	Rc1/4	104	151
100	Up to 300	35.5	32.5	41	60	26	50	3	20	16	44	16	110	M12 $\times 1.75$ depth 22	With accoss liais 22 engit 4.5	M26 $\times 1.5$	100	Rc3/8	105	152

*1 Use a thin wrench when tightening the piston rod.
*2 Long male rod end type (G) is the same rod end dimensions ($A, A L, H$) as the CG1 series.
*3 When female thread is used, use a washer, etc. to prevent the contact part at the rod end from being deformed depending on the material of the work piece.

Foot: CG3LN Bore size - Stroke
 With rubber bumper $8 \times \mathrm{J}$

flats KA
Sectional view of the rod part

*1 The rod end nut should be mounted in the position t (clearance) so that it will have a clearance of 1 mm or more
Foot in order to prevent interference of the nut with the bolt for mounting bracket when the rod is retracted.

Symbol Bore size (mm)	A	AL	B	B1	C	D	GA	GB	H	H1	H_{2}	1	J	KA	LC	LD	LH	LS	LT	LX	LZ	M	MM	NA	P	S	W	X	Y	Z	ZZ
20	14.5	12	34	13	14	8	12	6	20	5	4	26	M4 x 0.7	With acoss falas beragh 3.5	4	6	20	33	(3)	32	44	3	M8x 1.25	24	M 5×0.8	57	10	15	7	32	83
25	17.5	15	38.5	17	16.5	10	12.5	7	23	6	4	31	M5 x 0.8	With cososf fisis 8 enght 3.5	4	6	22	36	(3)	36	49	3.5	M10 1.25	29	M 5×0.8	60	10	15	7	35	89.5
32	17.5	15	45	17	20	12	11	7.5	23	6	4	38	M5 $\times 0.8$	With a arossfla 10 Oenght 3.5	4	7	25	36	(3)	44	58	3.5	M10 x 1.25	35.5	Rc1/8	62	10	16	8	36	91.5
40	23.5	20.5	54.5	19	26	14	10.5	7.5	29	8	5.5	47	M6x 1	Wath arossflas 12 leand 3.5	4	7	30	35	(3)	54	71	4	M14 1.5	44	Rc1/8	62	10	16.5	8.5	42.5	98
50	29	26	70.5	27	32	18	15	12	35	11	8	58	M 8×1.25	Wath acosssflas 16 6enght 4.5	5	10	40	49	(4.5)	66	86	5	M18 $\times 1.5$	55	Rc1/4	84	17.5	22	11	52.5	128.5
63	29	26	82.5	27	38	18	15	12	35	11	8	72	M10 1.5	With arossflas 16 Benght 4.5	5	12	45	49	(4.5)	82	106	5	M18 $\times 1.5$	69	Rc1/4	84	17.5	22	13	52.5	128.5
80	35.5	32.5	101	32	50	22	17	16	44	13	9.5	89	M10 1.5	With acossflat 19 length 4.5	6	11	55	56	(4.5)	100	125	5	M22 1.5	80	Rci1/4	104	20	28.5	14	68	157.5
100	35.5	32.5	121	41	60	26	20	16	44	16	9.5	110	M12 1.75	Wath acossflas 2 lenght 4.5	6	14	65	57	(6)	120	150	7	M26 1.5	100	Rc3/8	105	20	30	16	68	162

[^1]* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

Dimensions

Rod Flange: CG3FN Bore size - Stroke
 With rubber bumper

*1 End boss is machined on the flange for $\varnothing \mathrm{E}$.
*2 The rod end nut should be mounted in the position t (clearance) so that it will have a clearance of 1 mm or more in order to prevent interference of the nut with the bolt for mounting bracket when the rod is retracted.
Rod Flange

\qquad	A	AL	B	B1	C	D	E	F	FX	FD	FT	GA	GB	H	H_{1}	H_{2}	I	J	KA	MM	NA	P	S	ZZ
20	14.5	12	40	13	14	8	12	2	28	5.5	6	12	6	20	5	4	26	M4 $\times 0.7$	Wioth across flats 6 length 3.5	M 8×1.25	24	M5 $\times 0.8$	57	79
25	17.5	15	44	17	16.5	10	14	2	32	5.5	7	12.5	7	23	6	4	31	M 5×0.8	Woith across flats 8 length 3.5	M10 1.25	29	M 5×0.8	60	85
32	17.5	15	53	17	20	12	18	2	38	6.6	7	11	7.5	23	6	4	38	M 5×0.8	With across flats 10 length 3.5	M10 1.25	35.5	Rc1/8	62	87
40	23.5	20.5	61	19	26	14	25	2	46	6.6	8	10.5	7.5	29	8	5.5	47	M6x 1	Wioth across flats 12 length 3.5	M14 $\times 1.5$	44	Rc1/8	62	93
50	29	26	76	27	32	18	30	2	58	9	9	15	12	35	11	8	58	M 8×1.25	Wioth across flats 16 lengt 4.5	M18 $\times 1.5$	55	Rc1/4	84	121
63	29	26	92	27	38	18	32	2	70	11	9	15	12	35	11	8	72	M10 1.5	Wioth across flats 16 lengt 4.5	M18 $\times 1.5$	69	Rc1/4	84	121
80	35.5	32.5	104	32	50	22	40	3	82	11	11	17	16	44	13	9.5	89	M10 1.5	With across flats 19 length 4.5	M22 $\times 1.5$	80	Rc1/4	104	151
100	35.5	32.5	128	41	60	26	50	3	100	14	14	20	16	44	16	9.5	110	M12 $\times 1.75$	Wioth across flats 22 length 4.5	M26 x 1.5	100	Rc3/8	105	152

* Use a thin wrench when tightening the piston rod.
* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

Head Flange: CG3GN Bore size - Stroke
 With rubber bumper

* End boss is machined on the flange for $\varnothing \mathrm{E}$.

Head Flange

(mm)

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Standard stroke	A	AL	B	B1	C	D	E	F	FX	FD	FT	GA	GB	H	H_{1}	1	J	KA	MM	NA	P	S	ZZ
20	Up to 200	14.5	12	40	13	14	8	12	2	28	5.5	6	12	6	20	5	26	M 4×0.7	Wioth across flats 6 length 3.5	M 8×1.25	24	M5 $\times 0.8$	57	85
25	Up to 300	17.5	15	44	17	16.5	10	14	2	32	5.5	7	12.5	7	23	6	31	M5 0.8	With across flat 8 length 3.5	M10 1.25	29	M 5×0.8	60	92
32	Up to 300	17.5	15	53	17	20	12	18	2	38	6.6	7	11	7.5	23	6	38	M5 0.8	Wioth across flats 10 length 3.5	M10 x 1.25	35.5	Rc1/8	62	94
40	Up to 300	23.5	20.5	61	19	26	14	25	2	46	6.6	8	10.5	7.5	29	8	47	M6x1	With across fats 12 length 3.5	M14 1.5	44	Rc1/8	62	101
50	Up to 300	29	26	76	27	32	18	30	2	58	9	9	15	12	35	11	58	M 8×1.25	Wioth across flats 16 length 4.5	M18 1.5	55	Rc1/4	84	130
63	Up to 300	29	26	92	27	38	18	32	2	70	11	9	15	12	35	11	72	M10 1.5	Wioth across flats 16 length 4.5	M18 1.5	69	Rc1/4	84	130
80	Up to 300	35.5	32.5	104	32	50	22	40	3	82	11	11	17	16	44	13	89	M10 1.5	Wioth across flats 19 length 4.5	M 22×1.5	80	Rc1/4	104	162
100	Up to 300	35.5	32.5	128	41	60	26	50	3	100	14	14	20	16	44	16	110	M12 $\times 1.75$	Wioth across flats 22 length 4.5	M26 1.5	100	Rc3/8	105	166

* Use a thin wrench when tightening the piston rod.
* Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.

Dimensions
Clevis: CG3DN Bore size - Stroke (ø20 to ø63)

Clevis (ø20 to ø63)

$\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	Standard stroke	A	AL	B	B1	C	CD	CZ	D	E	F	GA	GB	H	H1	I	J	KA	L	MM
20	Up to 200	14.5	12	38	13	14	8	(29)	8	12	2	12	6	20	5	26	M4 $\times 0.7$	Width across flats 6 length 3.5	14	M8 $\times 1.25$
25	Up to 300	17.5	15	45.5	17	16.5	10	(33)	10	14	2	12.5	7	23	6	31	M5 $\times 0.8$	Width across flats 8 length 3.5	16	M10 $\times 1.25$
32	Up to 300	17.5	15	54	17	20	12	(40)	12	18	2	11	7.5	23	6	38	M 5×0.8	Width across flats 10 length 3.5	20	$\mathrm{M} 10 \times 1.25$
40	Up to 300	23.5	20.5	63.5	19	26	14	(49)	14	25	2	10.5	7.5	29	8	47	M6 $\times 1$	Width across flats 12 length 3.5	22	M14 $\times 1.5$
50	Up to 300	29	26	79	27	32	16	(60)	18	30	2	15	12	35	11	58	M 8×1.25	Width across flats 16 length 4.5	25	M18 $\times 1.5$
63	Up to 300	29	26	96	27	38	18	(74)	18	32	2	15	12	35	11	72	M10 1.5	Width across flats 16 length 4.5	30	M18 $\times 1.5$

$\begin{gathered} \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Standard } \\ \text { stroke } \end{gathered}$	NA	P	RR	S	TE	TF	TH	TT	TV	TW	TX	TY	TZ	Z	ZZ	Applicable pin part no
20	Up to 200	24	M5 x 0.8	11	57	10	5.5	25	3.2	(35.8)	42	16	28	43.4	91	112	CD-G02
25	Up to 300	29	M5 $\times 0.8$	13	60	10	5.5	30	3.2	(39.8)	42	20	28	48	99	120	CD-G25
32	Up to 300	35.5	Rc1/8	15	62	10	6.6	35	4.5	(49.4)	48	22	28	59.4	105	129	CD-G03
40	Up to 300	44	Rc1/8	18	62	10	6.6	40	4.5	(58.4)	56	30	30	71.4	113	141	CD-G04
50	Up to 300	55	Rc1/4	20	84	20	9	50	6	(72.4)	64	36	36	86	144	176	CD-G05
63	Up to 300	69	Rc1/4	22	84	20	11	60	8	(90.4)	74	46	46	105.4	149	18	CD-G06

* Use a thin wrench when tightening the piston rod. * Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.
* Refer to page 372 for pivoting bracket.

Clevis: CG3DN Bore size - Stroke (ø80, ø100)

Clevis ($\varnothing 80, \varnothing 100$)

$\begin{gathered} \hline \text { Bore size } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Standard } \\ \text { stroke } \end{gathered}$	A	AL	B	B1	C	CD	CX	CZ	D	E	F	GA	GB	H	H1	1	J	KA	
80	Up to 300	35.5	32.5	99.5	32	50	18	28	56	22	40	3	17	16	44	13	89	M10 1.5	Width across flats 19 length 4.5	35
100	Up to 300	35.5	32.5	120	41	60	22	32	64	26	50	3	20	16	44	16	110	M12 $\times 1.75$	Wioth across flats 22 length 4.5	43

Bore size $(\mathbf{m m})$	Standard stroke	MM	NA	\mathbf{P}	$\mathbf{R R}$	\mathbf{S}	$\mathbf{T F}$	TH	TT	TV	TW	TX	TY	TZ	\mathbf{V}	\mathbf{Z}	$\mathbf{Z Z}$	Applicable pin part no.
$\mathbf{8 0}$	Up to 300	M 22×1.5	80	Rc1/4	18	104	11	55	11	110	72	85	45	64	26	183	241.5	IY-G08
$\mathbf{1 0 0}$	Up to 300	M 26×1.5	100	Rc3/8	22	105	13.5	65	12	130	93	100	60	72	32	192	268.5	IY-G10

* Use a thin wrench when tightening the piston rod. * Refer to the dimensions of the basic type for the female rod end type and the long male rod end type.
* Refer to page 372 for pivoting bracket.

CG3 Series

Dimensions of Accessories

Single Knuckle Joint

$\begin{aligned} & \text { I-G02, I-G03 } \\ & \text { Material: Carbon steel } \end{aligned}$						$\begin{aligned} & \text { I-G04, I-G05, I-G08, I-G10 } \\ & \text { Material: Cast iron } \end{aligned}$				
			N			$\mathbb{E}[$				
Part no.	Applicable bore size (mm)	A	A1	E1	L1	MM	R1	U_{1}	NDh10	NX
I-G02	20	34	8.5	प16	25	M8x 1.25	10.3	11.5	$8{ }^{+0.08}$	${ }^{8-0.2}$
I-G03	25, 32	41	10.5	$\square 20$	30	M10 $\times 1.25$	12.8	14	$10^{+0.058}$	$10^{-0.2}$
I-G04	40	42	14	${ }^{2} 2$	30	M14 1.5	12	14	$10^{+0.058}$	$18-0.5$
I-G05	50, 63	56	18	028	40	M18 1.5	16	20	$14^{+0.070}$	$22^{-0.5}$
I-G08	80	71	21	038	50	M22 1.5	21	27	$18^{+0.070}$	$28-0.5$
I-G10	100	79	21	044	55	M26 1.5	24	31	$22^{+0.084}$	32-9

Knuckle Pin

* Retaining rings are included.

Clevis Pin

* Retaining rings are included.
* A clevis pin and a knuckle pin are common for the bore size ø80 and ø100.

Rod End Nut (For Male Thread)

Material: Carbon steel							(mm)	
Part no.	Applicable bore size (mm)	d	H_{1}	H_{2}	B_{1}	C	\varnothing D	\varnothing A
NT-02G3	20	M8 $\times 1.25$	5	4	13	(15)	12.5	10
NT-03G3	25, 32	M10 $\times 1.25$	6	4	17	(19.6)	16.5	12
NT-04G3	40	M14 $\times 1.5$	8	5.5	19	(21.9)	18	16.4
NT-05G3	50, 63	$\mathrm{M} 18 \times 1.5$	11	8	27	(31.2)	26	20.4
NT-08G3	80	M 22×1.5	13	9.5	32	(37)	31	28
NT-10G3	100	M26 x 1.5	16	9.5	41	(47.3)	39	33

Double Knuckle Joint
Y-G02, Y-G03 Y-G04, Y-G05, Y-G08, Y-G10 Material: Carbon steel

Material: Cast iron

(mm) \begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline Part no. $\begin{array}{c}\text { Applicable } \\
\text { boresize } \\
(\mathrm{mm})\end{array}$ \& \mathbf{A} \& $\mathbf{A}_{\mathbf{1}}$ \& $\mathbf{E}_{\mathbf{1}}$ \& $\mathbf{L}_{\mathbf{1}}$ \& $\mathbf{M M}$ \& $\mathbf{R}_{\mathbf{1}}$ \& $\mathbf{U}_{\mathbf{1}}$ \& $\mathbf{N D}$ \& $\mathbf{N X}$ \& $\mathbf{N Z}$ \& \mathbf{L} \& $\begin{array}{c}\text { Included } \\
\text { pin part }\end{array}$

\hline

\hline Y-G02 \& 20 \& 34 \& 8.5 \& $\square 16$ \& 25 \& M8x 1.25 \& 10.3 \& 11.5 \& 8 \& $8_{+0.2}^{+0.4}$ \& 16 \& 21 \& IY-G02

\hline Y-G03 \& 25, \& 4 \& \&

\hline

\hline Y-G03 \& 25,32 \& 41 \& 10.5 \& $\square 20$ \& 30 \& M10 1.25 \& 12.8 \& 14 \& 10 \& $10_{+0.2}^{+0.4}$ \& 20 \& 25.6 \& IY-G03

\hline

\hline Y-G04 \& 40 \& 42 \& 16 \& 022 \& 30 \& M14 $\times 1.5$ \& 12 \& 14 \& 10 \& $18+0.3$ \& 36 \& 41.6 \& IY-G04

\hline Y-G05 \& 50,63 \& 56 \& 20 \& 028 \& 40 \& $M 18 \times 1.5$ \& 16 \& 20 \& 14 \& $22^{+0.5}$ \& 44 \& 50.6 \& IY-G05

\hline

\hline Y-G05 \& 50,63 \& 56 \& 20 \& 028 \& 40 \& M18 $\times 1.5$ \& 16 \& 20 \& 14 \& $22_{+0.3}^{+0.5}$ \& 44 \& 50.6

IY-G05

\hline Y-G08 \& 80 \& 71 \& 23 \& $\boxed{3} 8$ \& 50 \& M22 1.5 \& 21 \& 27 \& 18 \& $28_{+0.3}^{0.5}$ \& 56 \& 64

\hline

Y-G08 \& 80 \& 71 \& 23 \& $\varnothing 38$ \& 50 \& M22 1.5 \& 21 \& 27 \& 18 \& $28_{+0.3}^{+0.5}$ \& 56 \& 64 \& $I Y-G 08$

\hline Y-G10 \& 100 \& 79 \& 24 \& $\varnothing 44$ \& 55 \& M26x 1.5 \& 24 \& 31 \& 22 \& $32_{+0.3}^{+0.5}$ \& 64 \& 72 \& IY-G10

\hline
\end{tabular} * A knuckle pin and retaining rings are included.

Pivoting Bracket (Order separately)

$\varnothing 20$ to $\varnothing 63$ Material: Carbon steel

$\varnothing 80, \varnothing 100$ Material: Cast iron

Part no.	Applicable bore size (mm		B	Td	T	E	TF		TH	TN	TR	TT
CG-020-24A	20		36	8	1	0	5.5		25	(29.3)	13	3.2
CG-025-24A	25		4	10		0	5.5		30	(33.1)	15	3.2
CG-032-24A	32		5	12		0	6.6		35	(40.4)	17	4.5
CG-040-24A	40		5	14		0	6.6		40	(49.2)	21	4.5
CG-050-24A	50		0	16	2	0	9		50	(60.4)	24	6
CG-063-24A	63		82	18		0	11		60	(74.6)	26	8
CG-080-24A	80		73	18			11		55	$28-0.15$	36	11
CG-100-24A	100		0	22			13.5		65	32-0.3	50	12
Part no.	Applicable bore size (mm)	TU	TV		TW		TX	TY		TZ	Applicable pin O.D	
CG-020-24A	20	(18.1)	(35.8)		42		16	28		38.3		
CG-025-24A	25	(20.7)	(39.8)		42		20	28		42.1	10 d 9	
CG-032-24A	32	(23.6)	(49.4		48		22	28		53.8	12 d 9	
CG-040-24A	40	(27.3)	(58.4		56		30	30		64.6	14d9	
CG-050-24A	50	(29.7)	(72.4		64		36	36		79.2	$16 \mathrm{~d}_{9}$	
CG-063-24A	63	(34.3)	(90.4		74		46	46		97.2	18 d 9	
CG-080-24A	80	-	-		72		85	45		110	18 d 9	
CG-100-24A	100	-	-		93		00	60		30	22d9	

CG3 Series
 Auto Switch Mounting

Auto Switch Proper Mounting Position（Detection at stroke end）and Its Mounting Height

Solid state auto switch

D－M9■，M9 \square W／D－M9 $\square A$
$\varnothing 20$ to $\varnothing 63$

（ ）：Dimension of the D－M9 \square A．
A and B are the dimensions from the end of the head cover／rod cover to the end of the auto switch．
D－M9■V，M9 \square WV／D－M9■AV
$\varnothing 20$ to $\varnothing 63$

A and B are the dimensions from the end of the head cover／rod cover to the end of the auto switch．
D－G5，K5，G5 $\square \mathbf{W}$ ，G5BA
D－K59W，D－G59F，D－G5NT
$\varnothing 20$ to $\varnothing 100$

D－H7ロ，H7ロW
D－H7NF，H7BA，D－H7C
$\varnothing 20$ to $\varnothing 63$

Auto Switch Proper Mounting Position

	$\begin{aligned} & \text { D-M9 } \square(V) \\ & \text { D-M9 } \square \text { (V) } \\ & \text { D-M9 } \end{aligned}$		D－A9 \square（V）		$\begin{array}{\|l} \text { D-C7/C8 } \\ \text { D-C73C } \\ \text { D-C80C } \end{array}$		$\begin{aligned} & \text { D-B5 } \\ & \text { D-B6 } \end{aligned}$		D－B59W		D－H7 \square D－H7C D－H7口W D－H7BA D－H7NF		D－G5■W D－K59W D－G59F D－G5 D－K5 D－G5NT D－G5BA	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B
20	28.5	16.5	24.5	12.5	25	13	19	8	22	10	24	12	20.5	8.5
25	29	19	25	15	25.5	15.5	19.5	9.5	22.5	12.5	24.5	14.5	21	11
32	30.5	19.5	26.5	15.5	27	16	21	10	24	13	26	15	22.5	11.5
40	31	19	27	15	27.5	15.5	－	－	－	－	26.5	14.5	－	－
50	42.5	29.5	38.5	25.5	39	26	33	20	36	23	38	25	34.5	21.5
63	42.5	29.5	38.5	25.5	39	26	33	20	36	23	38	25	34.5	21.5
80	－	－	－	－	－	－	44	29	47	31.5	－	－	45.5	30.5
100	－	－	－	－	－	－	44	30	47	32.5	－	－	45.5	31.5

Reed auto switch
 D－A9 \square
 $\varnothing 20$ to $\varnothing 63$

（ ）：Dimension of the D－A96．
A and B are the dimensions from the end of the head cover／rod cover to the end of the auto switch．
D－A9■V
$\varnothing 20$ to $\varnothing 63$

A and B are the dimensions from the end of the head cover／rod cover to the end of the auto switch．

D－C7，C8／D－C73C，C80C $\varnothing 20$ to $\varnothing 63$

D－B5，B6，B59W
$\varnothing 20$ to $\varnothing 100$

Auto Switch Mounting Height

Note 1）Adjust the auto switch after confirming the operating condition in the actual setting．
Note 2）For the combination of the following auto switches，bore sizes and mounting positions，the auto switch cannot be mounted to the port side．
－D－H7 \square type \cdots On the head side of the bore size $ø 20, ~ \varnothing 25, ~ ø 32, \varnothing 40, \varnothing 50, \varnothing 63$
－D－A9 $\square / C 7 \square / C 8$ types \cdots On the head side of the bore size ø20，ø32，ø40
－D－G5 $\square / K 5 \square / B 59 W$ types ．．．On the head side of the bore size ø20，ø25，ø32，ø50，ø63

	$\begin{aligned} & \text { D-M9 } \square V \\ & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \\ & \text { D-A9 } \end{aligned}$	D－M9■ D－H7ロ D－M9 D－H7ロW D－M9■A D－H7NF D－A9■ D－H7BA D－C7／C8	$\begin{array}{\|l\|} \hline \text { D-C73C } \\ \text { D-C80C } \end{array}$	D－G5／K5 D－G5NT D－G5CW D－G59F D－K59W D－H7C D－B5／B6 D－G5BA D－B59W
Bore size	Hs	Hs	Hs	Hs
20	25.5	24.5	27	27.5
25	28	27	29.5	30
32	31.5	30.5	33	33.5
40	36	35	37.5	38
50	41.5	40.5	43	43.5
63	48.5	47.5	50	50.5
80	－	－	－	59
100	－	－	－	69.5

Minimum Stroke for Auto Switch Mounting

	n : Number of auto switches (mm)					
Auto switch model	Number of auto switches					
	With 1 pc .	With 2 pcs.		With n pcs.		
		Different surfaces	Same surface	Different surfaces	Same surface	
D-M9 \square	5	$15^{\text {Note }} 1$)	40 Note 1)	$\begin{gathered} 20+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 55+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
D-M9 \square W	10	$15^{\text {Note 1) }}$	$40^{\text {Note 1) }}$	$\begin{gathered} 20+35 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 55+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
D-M9 \square A	10	25	$40^{\text {Note 1) }}$	$\begin{gathered} 25+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 60+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
D-A9 \square	5	15	$30^{\text {Note 1) }}$	$\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2.4 .6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 50+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
D-M9 \square V	5	20	35	$\begin{gathered} 20+35 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 35+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
D-A9 \square V	5	15	25	$\begin{gathered} 15+35 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note 3) }} \end{gathered}$	$\begin{gathered} 25+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
$\begin{aligned} & \text { D-M9 } \square W V \\ & \text { D-M9 } \square \text { AV } \end{aligned}$	10	20	35	$\begin{gathered} 20+35 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 35+35(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
$\begin{aligned} & \mathrm{D}-\mathrm{C} 7 \square \\ & \mathrm{D}-\mathrm{C} 80 \end{aligned}$	5	20	60	$\begin{gathered} 20+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 60+45(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
$\begin{aligned} & \text { D-H7 } \square \\ & \text { D-H7 } \square \text { W } \\ & \text { D-H7BA } \\ & \text { D-H7NF } \end{aligned}$	10	25	70	$\begin{gathered} 25+45 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 70+45(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
$\begin{aligned} & \text { D-C73C } \\ & \text { D-C80C } \\ & \text { D-H7C } \end{aligned}$	5	30	80	$\begin{gathered} 30+50 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note 3) }} \end{gathered}$	$\begin{gathered} 80+50(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
$\begin{aligned} & \text { D-B5 } \square \\ & \text { D-B64 } \\ & \text { D-G5 } \square \\ & \text { D-K59 } \square \end{aligned}$	5	25	70	$\begin{gathered} 25+50 \frac{(\mathrm{n}-2)}{2} \\ (\mathrm{n}=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 70+50(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	
D-B59W	10	30	75	$\begin{gathered} 30+50 \frac{(n-2)}{2} \\ (n=2,4,6 \cdots)^{\text {Note } 3)} \end{gathered}$	$\begin{gathered} 75+50(n-2) \\ (n=2,3,4,5 \cdots) \end{gathered}$	

Note 3) When " n " is an odd number, an even number that is one larger than this odd number is used for the calculation.
Note 1) Auto switch mounting

[^2]
Auto Switch Mounting Brackets／Part No．

Auto switch model	Bore size（mm）							
	20	25	32	40	50	63	80	100
$\begin{aligned} & \text { D-M9 } \square(V) \\ & \text { D-M9 } \square \text { W(V) } \\ & \text { D-A9 } \square(V) \end{aligned}$	Note 1） ВМАЗ－020	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-025 } \end{gathered}$	Note 1） ВМАЗ－032	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-040 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-050 } \end{gathered}$	$\begin{gathered} \text { Note 1) } \\ \text { BMA3-063 } \end{gathered}$	－	－
D－M9 \square A（V）	Note 2） BMA3－020S	Note 2） ВМАЗ－025S	Note 2） BMA3－032S	Note 2） BMA3－040S	Note 2） ВMA3－050S	Note 2） BMA3－063S	－	－
D－C7口／C80 D－C73C／C80C D－H7口 D－H7DW D－H7NF	BMA2－020A	BMA2－025A	BMA2－032A	BMA2－040A	BMA2－050A	BMA2－063A	－	－
D－H7BA	BMA2－020AS	BMA2－025AS	BMA2－032AS	BMA2－040AS	BMA2－050AS	BMA2－063AS	－	－
$\begin{array}{\|l\|} \hline \text { D-B5 } \square / B 64 \\ \text { D-B59W } \\ \text { D-G5■/K59 } \\ \text { D-G5 W/K59W } \\ \text { D-G5BA/G59F } \\ \text { D-G5NT } \\ \hline \end{array}$	BA－01	BA－02	BA－32	BA－04	BA－05	BA－06	BA－08	BA－10

Note 1）Set part number which includes the auto switch mounting band（BMA2－$\square \square \square A$ ）and the holder kit（BJ5－1／Switch bracket：Transparent）．
Since the switch bracket（made from nylon）are affected in an environment where alcohol，chloroform，methylamines，hydrochloric acid or sulfuric acid is splashed over，so it cannot be used．Please consult SMC regarding other chemicals．
Note 2）Set part number which includes the auto switch mounting band（BMA2－■口ロAS／Stainless steel screw）and the holder kit（BJ4－1／Switch bracket： White）．
For the D－M9 $\square \mathrm{A}(\mathrm{V})$ type auto switch，do not install the switch bracket on the indicator light．

［Stainless Steel Mounting Screw］

The following stainless steel mounting screw kit is available．Use it in accordance with the operating environment．
（Since the auto switch mounting bracket is not included，order it separately．）
BBA3：D－B5，B6，G5，K5 types
BBA4：D－C7，C80，H7 types
Note 3）Refer to page 1681 for details on the BBA3．
The above stainless steel screws are used when a cylinder is shipped with the D－H7BA／G5BA auto switches．
When only an auto switch is shipped independently，the BBA3 or BBA4 is attached．

Operating Range

								(mm)
Auto switch model	Bore size							
	20	25	32	40	50	63	80	100
$\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-M9 } \square \mathrm{A}(\mathrm{~V}) \end{aligned}$	4.5	5.0	4.5	5.5	5.0	5.5	-	-
D-A9 \square	7	6	8	8	8	9	-	-
$\begin{aligned} & \hline \text { D-C7/C80 } \\ & \text { D-C73C/C80C } \end{aligned}$	8	10	9	10	10	11	-	-
D-B5 $\square / B 64$	8	10	9	10	10	11	11	11
D-B59W	13	13	14	14	14	17	16	18
D-H7 $\square /$ H7 \square W D-H7NF/H7BA	4	4	4.5	5	6	6.5	-	-
D-H7C	7	8.5	9	10	9.5	10.5	-	-
D-G5■/G5 \square W/G59F D-G5BA/K59/K59W	4	4	4.5	5	6	6.5	6.5	7
D-G5NT	4	4	4.5	5	6	6.5	6.5	7

* Values which include hysteresis are for guideline purposes only, they are not a guarantee (assuming approximately $\pm 30 \%$ dispersion) and may change substantially depending on the ambient environment.

Cylinder Mounting Bracket, by Stroke/Auto Switch Mounting Surfaces

Auto switch model	st: Stroke (mm)		
	Basic, Foot, Flange, Clevis		
	With 1 pc. (Rod cover side)	With 2 pcs. (Different surfaces)	With 2 pcs. (Same surface)
	Port side	Port side	Port side
$\begin{aligned} & \text { D-M9 } \square(\mathrm{V}) \\ & \text { D-M9 } \square \mathrm{W}(\mathrm{~V}) \\ & \text { D-M9 } \square \mathbf{A}(\mathrm{V}) \\ & \text { D-A9 } \square \end{aligned}$	10 st or more	15 to 44 st	45 st or more
D-C7/C8	10 st or more	15 to 49 st	50 st or more
D-H7 $\square / \mathrm{H} 7 \square \mathrm{~W}$ D-H7BA/H7NF	10 st or more	15 to 59 st	60 st or more
D-C73C/C80C/H7C	10 st or more	15 to 64 st	65 st or more
$\begin{aligned} & \text { D-B5/B6/G5/K5 } \\ & \text { D-G5 } \square W / K 59 W / G 5 B A \\ & \text { D-G59F/G5NT } \end{aligned}$	10 st or more	15 to 74 st	75 st or more
D-B59W	15 st or more	20 to 74 st	75 st or more

Other than the applicable auto switches listed in "How to Order", the following auto switches are mountable.
Refer to pages 1575 to 1701 for detailed specifications.

Type	Model	Electrical entry	Features	Applicable bore size
Solid state	D-H7A1, H7A2, H7B	Grommet (ln-line)	-	ø20 to ø63
	D-H7NW, H7PW, H7BW		Diagnostic indication (2-color indicator)	
	D-H7BA		Water resistant (2-color)	
	D-G5NT		With timer	$ø 20$ to ø100
Reed	D-C73, C76		-	ø20 to ø63
	D-C80		Without indicator light	
	D-B53		-	ø20 to ø100

* With pre-wired connector is also available for solid state auto switches. For details, refer to pages 1648 and 1649.
* Normally closed ($\mathrm{NC}=\mathrm{b}$ contact) solid state auto switches (D-F9G/F9H) are also available. For details, refer to page 1593.

\triangle Warning

1. Operate the cylinder within the specified cylinder speed, kinetic energy and lateral load at the rod end. Otherwise, cylinder and seal damage may occur.
2. The allowable kinetic energy is different between the cylinders with male rod end and with female rod end due to the different thread sizes. Refer to page 368.
3. When the cylinder is used as mounted with a single side fixed or free (basic type, flange type), be careful not to apply vibration or impact to the cylinder body. A bending moment will be applied to the cylinder due to the vibration generated at the stroke end, and the cylinder may be damaged. In such a case, mount a bracket to reduce the vibration of the cylinder or use the cylinder at a piston speed low enough to prevent the cylinder from vibrating at the stroke end.
Furthermore, when the cylinder is moved or mounted horizontally and with a single side fixed, use a bracket to fix the cylinder.
4. When female rod end is used, use a washer, etc. to prevent the contact part at the rod end from being deformed depending on the material of the work piece.

\triangle Caution

1. Do not use the air cylinder as an air- hydro cylinder. This will result in oil leakage and damage the product.
2. Use a thin wrench when tightening the piston rod.
3. Check the mounting direction of the rod end nut (for male thread). Refer to Mounting Procedure on page 367 for details.
4. There are some changes in the dimensions and the specifications of this model from the current model. Please check them when replacing from the current model. Check the operating conditions and interference with workpieces before use.

Disassembly/Replacement
 Warning

1. Only people who have sufficient knowledge and experience are allowed to replace seals.
The person who disassembles and reassembles the cylinder is responsible for the safety of the product. Repeatedly disassembling and reassembling the product may cause wearing or deformation of the screws as well as a decline in screw tightening strength. When reassembling the product, be sure to check the cover and tubing screws for wear, deformities, or any other abnormalities. Operating the product with damaged screws may result in the cover or tubing coming off during operation, which could lead to a serious accident. Caution must be taken to avoid such incidents.

\triangle Caution

1. Do not replace the bushings.

The bushings are press-fit. To replace them, they must be replaced together with the cover assembly.
2. To replace a seal, apply grease to the new seal before installing it.
If the cylinder is put into operation without applying grease to the seal, it could cause the seal to wear significantly, leading to premature air leakage.
3. Cylinders with $\varnothing 50$ or larger bore sizes cannot be disassembled.
When disassembling cylinders with bore sizes ø20 through $\varnothing 40$, grip the double flat part of either the head cover or the rod cover with a vise and loosen the other side with a wrench or a monkey wrench, etc., and then remove the cover. When retightening, tighten approximately 2 degrees more than the original position. (Cylinders with $\varnothing 50$ or larger bore sizes are tightened with a large tightening torque and cannot be disassembled. If disassembly is required, please contact SMC.)
4. When replacing seals, take care not to hurt your hand or finger on the corners of parts.

[^0]: * For the trunnion type, please contact SMC sales representatives.

[^1]: * Use a thin wrench when tightening the piston rod.

[^2]: Note 2) Minimum stroke for auto switch mounting in types other than those mentioned in Note 1

