Mechanically Jointed Rodless Cylinder

MY2 Series

ø16, ø25, ø40

Compact and low profile design

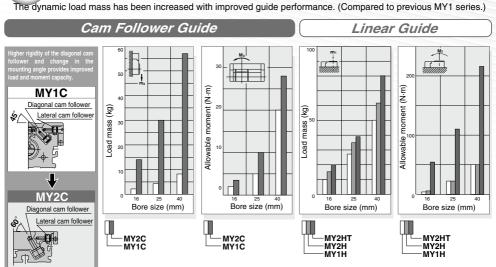
D
-X

Technical

Mechanically Jointed Rodless Cylinder

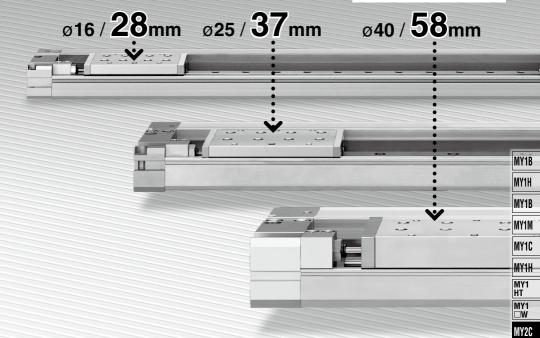
MY2 Series

Compact and low profile design


A complete reduction in height of the cylinder allows mounting in a narrow space. The low profile design of the cylinder built with a high precision single or double axis guide, provides same load capacity as the earlier MY1 series.

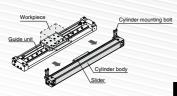
Three types of guide options to suit a variety of applications.

actuator (cylinder).

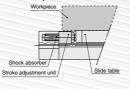

Increased load capacity

Height reduction by 30% (Compared to previous MY1 series.)

Series ø16 ø25 ø40 MY2C MY2H (Single axis) 28 37 58 MY2HT (Double axis) MY1C, MY1H 54 84


Low profile achieved by placing the guide unit and cylinder body next to one another. (dimension reduced by 12 mm to 26 mm)

Easy replacement of cylinder body


The cylinder can be replaced without removing the workpiece

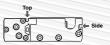
The cylinder can be detached by simply removing the four mounting bolts, and pulling it off in the direction of the arrows.

Improved mounting flexibility

The low profile design allows mounting of heavy-loaded shock absorber (H unit) without interfering with the workpiece.



Option


Optional side support is available (MY2C series)

A side support prevents guide deflection for the long stroke application.

Two mounting types

Auto switch mounting on two sides

Standard with air cushion and centralized piping

Series Variations

Series varia	LIOII	_																					
Model	Bore size Standard stroke (mm)									Max. available	Made to order												
iviodei	(mm)	50	100	150	200	250	300	350	400	450	500	550	600	700	800	900	1000	1200	1400	1600 18	800 2000	stroke (mm)	Made to order
MY2C Cam follower guide	16	+	-	-	-	-	-	-	-	0		0	4				-	0	0	-	0-0	5000 (3000 for ø16)	· Helical insert
MY2H Linear guide/Single axis	25	-	-	-	-	-	-	-	-		-	-	-									1500	 Shock absorber soft type RJ
MY2HT Linear guide/Double axis	40	-	-	+	-	-	+	-	-	-	-	-	-		+	+		+				(1000 for ø16)	series mounted

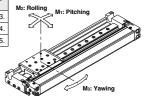
Note) Availability for Made-to-Order differs, depending on the size and the model.

MY3A

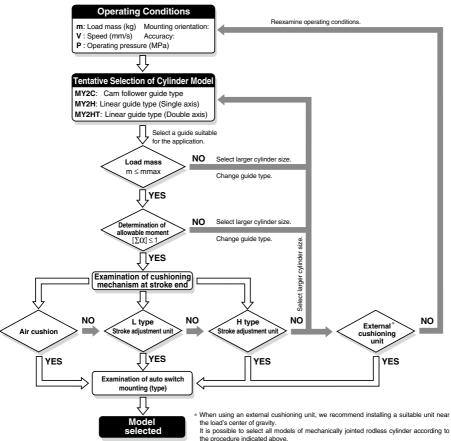
MY3B

MY3M

Model Selection 1


The following are the steps for selection of the MY2 series best suited to your application.

Standards for Tentative Model Selection

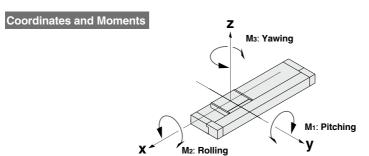

Cylinder model	Guide type	Standards for guide selection	Graphs for related allowable values
MY2C	Cam follower guide	Slide table accuracy approx. ± 0.05 mm $^{\text{Note 2}}$	Refer to page 1373.
MY2H	Linear guide type (Single axis)	Slide table accuracy ±0.05 mm or less Note 2)	Refer to page 1374.
MY2HT	Linear guide type (Double axis)	Slide table accuracy ±0.05 mm or less Note 2)	Refer to page 1375.

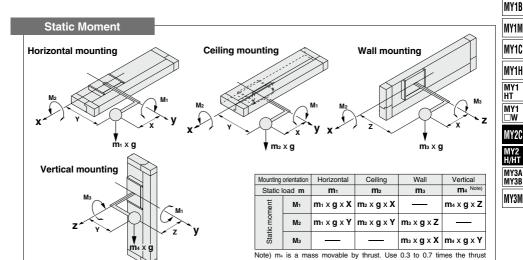
Note 1) Please use the precision of each guide as a guideline for selection. Please contact SMC if warranty on precision is required

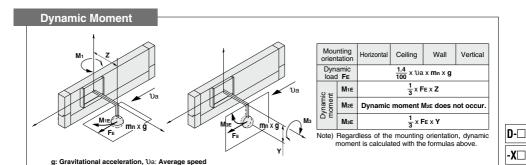
Note 2) Accuracy indicates displacement of the table (at stroke end) when 50% of the allowable moment shown in the catalog is applied. (Reference value)

Selection Flow Chart

Refer to the separate operation manual for further explanation, and please consult with


SMC regarding any questions.


(differs depending on the operating speed) as a guide for actual use.


Types of Moment Applied on Rodless Cylinders

Multiple moments may be generated depending on the mounting orientation, load, and position of the center of gravity.

g: Gravitational acceleration

ØSMC

Technical

MY1B

MY1H

Maximum Allowable Moment/Maximum Load Mass

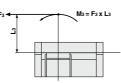
Model	Bore size	Maximum a	allowable mo	ment (N·m)	Maximum load mass (kg)			
iviouei	(mm)	M1 M2		Мз	m1	m ₂	m ₃	
	16	5	4	3.5	18	16	14	
MY2C	25	13	14	10	35	35	30	
	40	45	33	28	68	66	57	
	16	7	6	7	15	13	13	
MY2H	25	28	26	26	32	30	30	
	40	60	50	60	62	62	62	
	16	46	55	46	20	18	18	
MY2HT	25	100	120	100	38	35	35	
	40	200	220	200	80	80	80	

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum load mass for a particular piston speed.

Caution on Design

If the product is operated with a guide load factor which exceeds the standard value, malfunction may occur due to damage to the cam follower and guide portion. Therefore, be sure to confirm that the guide load factor is 1 or less.

Load mass (kg)



Moment (N·m)

<Calculation of guide load factor>

- 1. Maximum load mass (1), static moment (2), and dynamic moment (3) (at the time of impact with stopper) must be examined for the selection calculations.
- * To evaluate, use Va (average speed) for (1) and (2), and V (impact speed V = 1.4Va) for (3). Calculate m max for (1) from the maximum load mass graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Sum of guide $\Sigma \alpha =$ load factors	Load mass [m]	Static moment [M] (1)	Dynamic moment [ME] (2)
load factors 20. –	+-	Allowable static moment [Mmax]	Allowable dynamic moment [MEmax]

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the workpiece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formulas [Dynamic moment at impact]

Use the following formulas to calculate dynamic moment when taking stopper impact into consideration.

m : Load mass (kg)

U : Impact speed (mm/s)

F : Load (N)

L1 : Distance to the load's center of gravity (m)

FE: Load equivalent to impact (at impact with stopper) (N) ME: Dynamic moment (N·m)

Va: Average speed (mm/s)

g : Gravitational acceleration (9.8 m/s2)

M : Static moment (N·m)

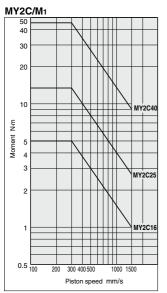
V = 1.4Va (mm/s) $FE = \frac{1.4}{100} Va \cdot g \cdot m \text{ Note 4}$

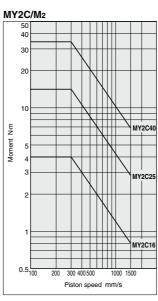
 $\therefore ME = \frac{1}{3} \cdot FE \cdot L_1 = 0.05 \text{ } \text{0 a m L}_1 \text{ } \text{ } (\text{N} \cdot \text{m}) \text{ } \text{Note 5})$

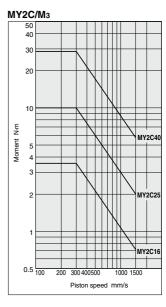
Note 4) $\frac{1.4}{100}$ Va is a dimensionless coefficient for calculating impact force. Note 5) Average load coefficient (= $\frac{1}{3}$):
This coefficient is for averaging the maximum load moment at

the time of stopper impact according to service life calculations.

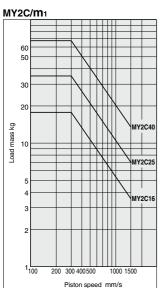
3. Refer to pages 1378 and 1379 for detailed selection procedures.

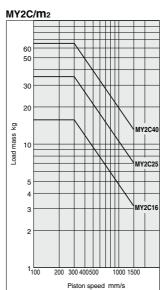

Maximum Allowable Moment

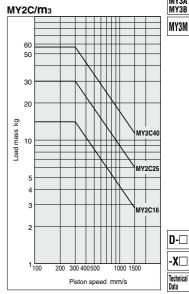

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum load mass value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.


Maximum Load Mass

Select the load mass from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.


Moment/MY2C





Load Mass/MY2C

SMC

Technical Data 1373

-X□

 $\square W$ MY2C

MY1B

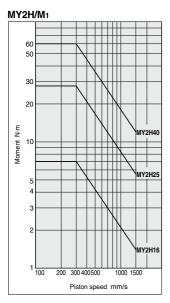
MY1H

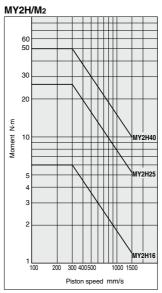
MY1B

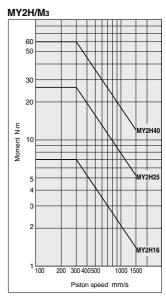
MY1M

MY1C

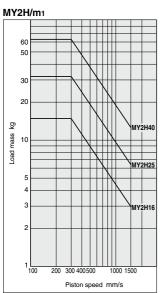
MY1H

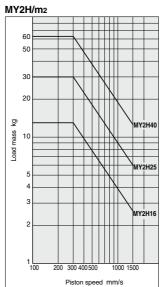

MY1

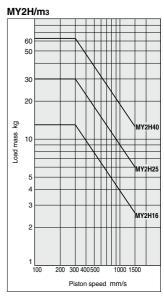

MY1


MY3A MY3B MY3M

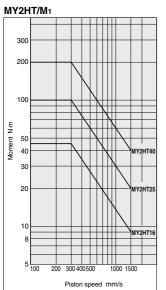
Maximum Allowable Moment/Maximum Load Mass

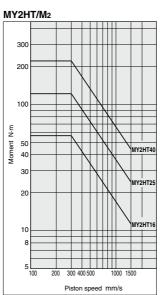

Moment/MY2H (Single axis)

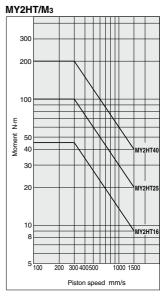




Load Mass/MY2H (Single axis)





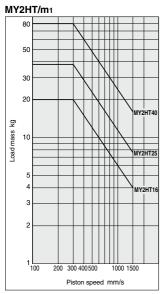


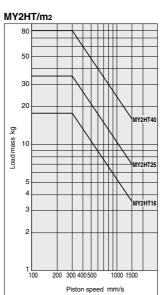
Moment/MY2HT (Double axis)

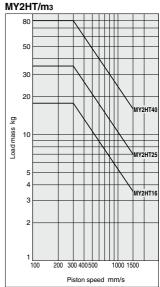
MY1B MY1M MY1C MY1H MY1 HT

MY1B

MY1H


MY2C


MY1


MY2 H/HT

MY3A MY3B

Load Mass/MY2HT (Double axis)

Cushion Capacity

Cushion Selection

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

The air cushion mechanism is installed to avoid excessive impact of the piston at the stroke end during high speed operation. The air cushion does not act to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

Stroke adjustment unit with shock absorber-Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is necessary because the cylinder stroke is outside of the effective air cushion stroke range due to stroke adjustment.

L unit

Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

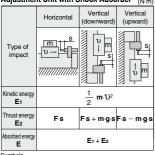
H unit

Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

⚠ Caution

Do not use a shock absorber and air cushion together.

(mm)


Air Cushion Stroke

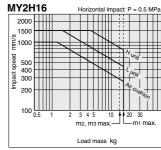
Bore size (mm)	Cushion stroke
16	12
25	15
40	24

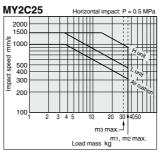
Stroke Adjustment Unit Holding Bolt Tightening Torque

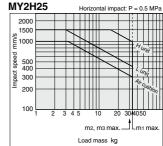
	()				
Bore size (mm)	Tightening torque				
16	0.7				
25	1.8				
40	5.8				

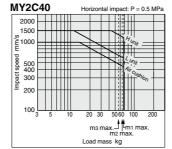
Calculation of Absorbed Energy for Stroke Adjustment Unit with Shock Absorber (N·m

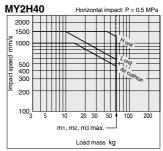

Symbols

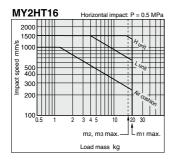

Speed of impacting object (m/s) m: Mass of impacting object (kg)
 F: Cylinder thrust (N) g: Gravitational acceleration (9.8 m/s²)

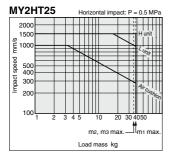

s: Shock absorber stroke (m)

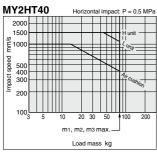

Note) The speed of the impacting object is measured at the time of impact with the shock absorber.


Absorption Capacity of Air Cushion and Stroke Adjustment Units









▲ Specific Product Precautions

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Handling

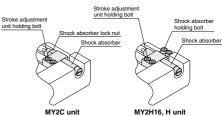
Do not get your hands caught during cylinder operation.

For the cylinder with a stroke adjustment unit, the space between the slide table and stroke adjustment unit is very small, and your hands may get caught. When operating without a protective cover, be careful not to get your hands caught.

2. Do not operate with the stroke adjustment unit fixed in an intermediate position.

When the stroke adjustment unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In such cases, as a stroke adjustment unit with the spacer for intermediate securing is available, it is recommended to use it.

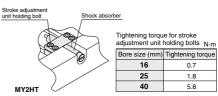
For other lengths, please consult with SMC.


<Securing the unit body>

The unit body is secured by equally tightening the two stroke adjustment unit holding bolts. (See drawings below.)

<Stroke adjustment of shock absorber>

For MY2C and MY2H


Loosen the shock absorber lock nut (shock absorber holding bolts for MY2H16, H unit), and adjust the stroke by rotating the shock absorber. After the adjustment, tighten the lock nut (holding bolts) to secure the shock absorber.

For MY2HT

ØSMC

Loosen the two unit holding bolts on the shock absorber side, rotate the shock absorber and adjust the stroke. After the adjustment, secure the shock absorber by tightening the unit holding bolts equally.

D-

-X□

Technical

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

MY1

MY2C

MY3A

MY3B

MY3M

нт

MY2 Series

Model Selection 2

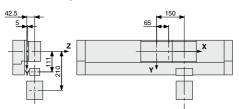
The following are the steps for selection of the MY2 series best suited to your application.

Calculation of Guide Load Factor

Wc: MHL2-16D1 (795 g)

Wd: Workpiece (1500 g)

1 Operating Conditions


Cylinder MY2H40G-500 Average operating speed va ... 300 mm/s Mounting orientation Wall mounting MY2H40G-500 Wb: MGGLB25-200 (4.35 kg)

---- Mounting Orientation 1. Horizontal mounting 3. Ceiling mounting P. 1280 Refer to the pages above for actual examples of

calculation for each orientation.

2 Load Blocking

Wa: Connection plate t =10 (880 g)

Workpiece Mass and Center of Gravity

Workpiece	Mass	Center of gravity								
Wn	mn	X-axis Xn	Y-axis Yn	Z-axis Zn						
Wa	0.88 kg	65 mm	0 mm	5 mm						
Wb	4.35 kg	150 mm	0 mm	42.5 mm						
Wc	0.795 kg	150 mm	111 mm	42.5 mm						
W d 1.5 kg		150 mm	210 mm	42.5 mm						

n = a, b, c, d

3 Composite Center of Gravity Calculation

$$m_3 = \Sigma m_n$$

= 0.88 + 4.35 + 0.795 + 1.5 = **7.525 kg**

$$= 0.88 + 4.35 + 0.795 + 1.5 = 7.525$$

$$X = \frac{1}{m_2} \times \Sigma \text{ (mn} \times xn)$$

$$= \frac{1}{7.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 1.5 \times 150) = 140.1 \text{ mm}$$

$$Y = \frac{1}{m_3} \times \Sigma (m_n \times y_n)$$

=
$$\frac{1}{7.525}$$
 (0.88 x 0 + 4.35 x 0 + 0.795 x 111 + 1.5 x 210) = **53.6 mm**

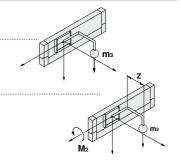
$$\mathbf{Z} = \frac{1}{\mathbf{m}_3} \times \Sigma (\mathbf{m}_n \times \mathbf{z}_n)$$

=
$$\frac{1}{7.525}$$
 (0.88 x 5 + 4.35 x 42.5 + 0.795 x 42.5 + 1.5 x 42.5) = **38.1 mm**

4 Calculation of Load Factor for Static Load

m₃: Mass

m₃ max (from 1 of graph MY2H/m₃) = 62 (kg)

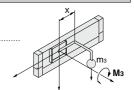

Load factor $\alpha_1 = m_3 / m_3 max = 7.525/62 = 0.12$

M2: Moment

 $M_2 \text{ max}$ (from 2 of graph MY2H/ M_2) = 50 (N·m)

 $M_2 = m_3 \times q \times Z = 7.525 \times 9.8 \times 38.1 \times 10^{-3} = 2.81 \text{ (N·m)}$

Load factor $\alpha_2 = M_2/M_2 \text{ max} = 2.81/50 = 0.06$


Calculation of Guide Load Factor

M₃: Moment

M₃ max (from 3 of graph MY2H/M₃) = 60 (N·m)

$$M_3 = m_3 \times g \times X = 7.525 \times 9.8 \times 140.1 \times 10^{-3} = 10.33 \text{ (N·m)}$$

Load factor CX3 = M3/M3 max = 10.33/60 = 0.17

5 Calculation of Load Factor for Dynamic Moment

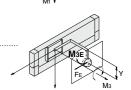
Equivalent load FE at impact

$$F_E = \frac{1.4}{100} \times va \times g \times m = \frac{1.4}{100} \times 300 \times 9.8 \times 7.525 = 309.7 \text{ (N)}$$

M₁F· Moment

M₁E max (from 4 of graph MY2H/**M**₁ where 1.4ν **a** = 420 mm/s) = 42.9 (N·m)

$$M_1E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 309.7 \times 38.1 \times 10^{-3} = 3.93 \text{ (N·m)}$$


Load factor $C4 = M_1E/M_1E max = 3.93/42.9 = 0.09$

 M_3E max (from 5 of graph MY2H/ M_3 where 1.4va = 420 mm/s) = 42.9 (N·m)

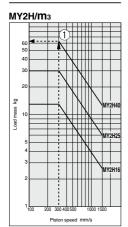
$$M_3E = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 309.7 \times 53.6 \times 10^{-3} = 5.53 \text{ (N·m)}$$

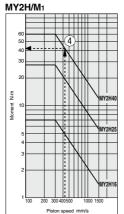
Load factor $\alpha_5 = M_3 E/M_3 E max = 5.53/42.9 = 0.13$

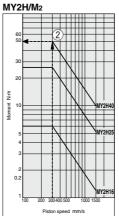
6 Sum and Examination of Guide Load Factors

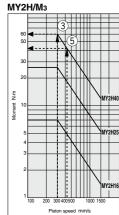
$$\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = \textbf{0.57} \leq \textbf{1}$$

The above calculation is within the allowable value and the selected model can be used.


Select a separate shock absorber.


In an actual calculation, when the sum of guide load factors $\Sigma\alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Also, this calculation can be performed easily with the "SMC Pneumatics CAD System".


SMC


Load Mass

Allowable Moment

MY1B MY1H

MY1B

MY1M

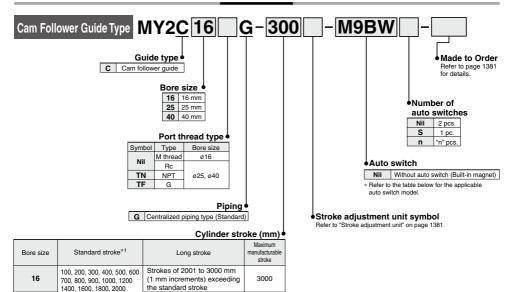
MY1C MY1H

MY1 HT MY1 □W

MY2C

MY2 H/HT MY3A MY3B

MY3M


D-□

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type

MY2C Series

ø16, ø25, ø40

How to Order

25, 40
Ordering example

* Long stroke can be ordered the same as the standard stroke. MY2C25-3000L-M9BW

*1 The stroke can be manu-

factured in 1 mm incre-

ments from 1 mm stroke.

Note) Please be advised that with stroke 49 or less, there are cases where auto switch mounting is not possible and the performance of the air cushion may decline.

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches.

the standard stroke

Strokes of 2001 to 5000 mm

(1 mm increments) exceeding

끄만	nicable Auto Swi	torres/ne		pages 1373 to	170110	i iuitiiei iii	ionnation	on auto sw	ilcries.							
		Florence	Indicator light	VA (""	Load voltage Auto swi			Auto switc	h model	Lead	wire I	ength	n (m)	Day ordered		
Type	Special function	Electrical entry	ator	(Output)	(Output) DC		AC	Perpendicular	In-line	0.5	1	3	5	Pre-wired connector	Applica	ble load
		Citaly	ligi	(Output)			AC	Perpendicular	m-ine	(Nil)	(M)	(L)	(Z)	COMMICCION		
				3-wire (NPN)		5 V. 12 V		M9NV	M9N	•	•	•	0	0	IC	
				3-wire (PNP)		5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit	
switch				2-wire		12 V		M9BV	M9B	•	•	•	0	0	_	
		Grommet		3-wire (NPN)		5 V. 12 V	1	M9NWV	M9NW	•	•	•	0	0	IC	Relay,
	Diagnostic indication		Yes	3-wire (PNP)	24 V	J V, 12 V	_	M9PWV	M9PW	•	•	•	0	0	circuit	PLC
Solid auto s	(2-color indicator)			2-wire		12 V		M9BWV	M9BW	•	•	•	0	0	_	PLC
s s		1		3-wire (NPN)		5 V, 12 V		M9NAV*1	M9NA*1	0	0	•	0	0	IC	
	Water resistant (2-color indicator)			3-wire (PNP)				M9PAV*1	M9PA*1	0	0	•	0	0	circuit	
	` ′			2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	0	_	
-5				3-wire		5.4		A96V	A96						IC	
× ed		Crammat	Yes	(NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	_	_	circuit	_
Reed auto switch		Grommet				100 V	A93V*2	A93	•	•	•	•	_	_	Relay,	
a a			No	2-wire	24 V	12 V	100 V or less	A90V	A90	•	_	•	 	_	IC circuit	PLC

5000

- *1 Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance.
- Consult with SMC regarding water resistant types with the above model numbers.
- *2 1 m type lead wire is only applicable to D-A93.
- * Lead wire length symbols: 0.5 m Nil (Example) M9NW
 - 1 m ······ M (Example) M9NWM
 - 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ
- * Solid state auto switches marked with "O" are produced upon receipt of order.
- * There are other applicable auto switches than listed above. For details, refer to page 1398 * For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.
- * Auto switches are shipped together (not assembled). (Refer to page 1398 for the details of auto switch mounting.)

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type MY2C Series

Made to Order: Individual Specifications (For details, refer to page 1399)

Symbol	Specifications
-X168	Helical insert thread

Made to Order Specifications

Click here for details

Symbol	Specifications
-XB22	Shock absorber soft type RJ series type

Specifications

Bore size (mm)	16	25	40				
Fluid	Air						
Action	Double acting						
Operating pressure range	ge 0.15 to 0.8 MPa 0.1 to 0.8 MPa						
Proof pressure	1.2 MPa						
Ambient and fluid temperature	re 5 to 60°C						
Cushion	Air	cushion, Shock absor	rber				
Lubrication	N	lot required (Non-lube	e)				
O4	1000 or less +1.8	2700 or less +1.8	+2.8				
Stroke length tolerance	1001 to 3000 ^{+2.8}	2700 or less ₀ ,	2701 to 5000 0				
Port size	M5 x 0.8	Rc 1/8	Rc 1/4				

Piston Speed

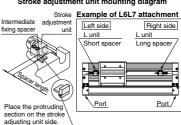
Bore size (mm)	16	16 25 40								
Without stroke adjustme	ent unit	100 to 1000 mm/s ⁽¹⁾									
Stroke adjustment unit	L unit and H unit		100 to 1500 mm/	's							

Note 1) When exceeding the air cushion stroke ranges on page 1376, the piston speed should be 100 to 200

Note 2) Use at a piston speed within the absorption capacity range. Refer to page 1376.

Stroke Adjustment Unit Specifications

Bore size (m	m)	16	2	5	40			
Unit symbol		L	L	Н	L	Н		
Shock absorber model		RB0806	RB1007	RB1412	RB1412	RB2015		
Stroke adjustment range	Without spacer	0 to -5.6	0 to -	-11.5	0 to -16			
by intermediate fixing	With short spacer	−5.6 to −11.2	-11.5	to -23	-16 to -32			
spacer (mm)	With long spacer	-11.2 to -16.8	-23 to	-34.5	−32 to −48			


^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

				Riç	ght side s	troke adj	ustment ı	unit		
			Without	L: With absorbe	low load s	shock	H: With high load shock absorber			
			unit		With short spacer	With long spacer		With short spacer	With long spacer	
	Wit	thout unit	Nil	SL	SL6	SL7	SH	SH6	SH7	
활별		w load shock	LS	L	LL6	LL7	LH	LH6	LH7	
stroke nt unit	absorber	With short spacer	L6S	L6L	L6	L6L7	L6H	L6H6	L6H7	
		With long spacer	L7S	L7L	L7L6	L7	L7H	L7H6	L7H7	
- 3		gh load shock	HS	HL	HL6	HL7	Н	HH6	HH7	
Left	absorber	With short spacer	H6S	H6L	H6L6	H6L7	Н6Н	H6	H6H7	
		With long spacer	H7S	H7L	H7L6	H7L7	H7H	H7H6	H7	

^{*} Spacers are used to fix the stroke adjustment unit at an intermediate stroke position.

Stroke adjustment unit mounting diagram

Shock Absorbers for L and H Units

T	Stroke		ore size (mr	n)
Туре	adjustment unit	16	25	40
Standard	L	RB0806	RB1007	RB1412
(Shock absorber/RB series)	Н	_	RB1412	RB2015
Shock absorber/soft type	L	RJ0806H	RJ1007H	RJ1412H
RJ series mounted (-XB22)	Н	_	RJ1412H	_

^{*} The shock absorber service life is different from that of the MY2C cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

Shock Absorber Specifications

Mod	lel	RB 0806	RB 1007	RB 1412	RB 2015			
Max. energy al	osorption (J)	2.9	5.9	19.6	58.8			
Stroke absor	ption (mm)	6	6 7 12					
Max. collision s	peed (mm/s)	1500	1500	1500	1500			
Max. operating frequ	iency (cycle/min)	80	70	45	25			
Spring	Extended	1.96	4.22	6.86	8.34			
force (N)	Retracted	4.22	4.22 6.86 15.98 20.					
Operating tempera	ture range (°C)	5 to 60						

^{*} The shock absorber service life is different from that of the MY2C cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

1381 B

D-□ -X□

MY1B

MY1H

MY1B

MY1M

MY1C MY1H MY1 MY1

MY2C MY2

H/HT MY3A

MY3B

MY3M

^{*} Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details, refer to page 1752.

Theoretical Output

								(N)							
Bore	Piston		Operating pressure (MPa)												
size (mm)	area (mm²)	0.2	0.2 0.3 0.4 0.5 0.6 0.7												
16	200	40	60	80	100	120	140	160							
25	490	98	147	196	196 245		343	392							
40	1256	251	377	502	628	754	879	1005							

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Replacement Parts

Drive Unit (Cylinder) Replacement Part No.

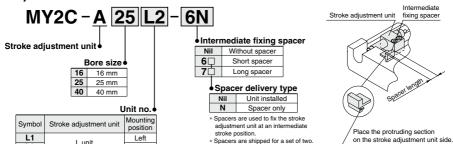
Bore size (mm)	MY2C
16	MY2BH16G-Stroke
25	MY2BH25□G- Stroke
40	MY2BH40□G- Stroke

Note) Order auto switches separately.

Weight

						(kg	
Bore size	Basic	Additional weight per each	Weight of	Side support bracket	Stroke adju weight (
(mm)	weight	50 mm of stroke	moving parts	weight (per set)	L unit weight	H unit weight	
16	1.05	0.13	0.34	0.01	0.03	_	
25	2.59	0.29	0.97	0.02	0.06	0.09	
40	8.78	0.67	3.09	0.04	0.17	0.23	

Calculation: (Example) MY2C25G-300L


·· 2.59 kg · Basic weight... Cylinder stroke --... 300 stroke · Additional weight 0.29/50 stroke $2.59 + 0.29 \times 300/50 + 0.06 \times 2 \cong 4.45 \text{ kg}$ Weight of L unit ---- 0.06 kg

Enter a symbol for port thread type inside

.

Option

Stroke Adjustment Unit Part No.

H unit Note 1) Refer to page 1381 for details about adjustment range

Lunit

Right

Left

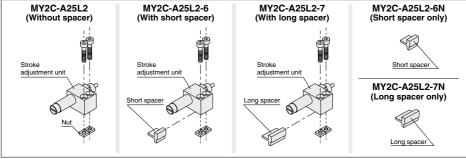
Right

Note 2) L unit only for ø16

 When ordering the intermediate fixing spacer for the stroke adjustment unit, the intermediate fixing spacer is shipped together

Intermediate

fixing spacer

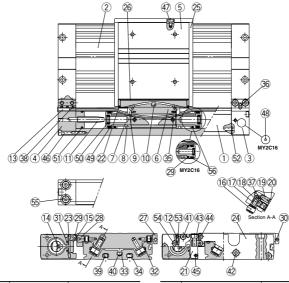

Spacerlength

Component Parts

L2

H1

H2



^{*} Nuts are equipped on the cylinder body

Mechanically Jointed Rodless Cylinder MY2C Series

Construction

MY2C

Component Parts

No.	Description	Material	Note
1	Cylinder tube	Aluminium alloy	Hard anodized
2	Body	Aluminium alloy	Hard anodized
3	Head cover WR	Aluminium alloy	Hard anodized
4	Head cover WL	Aluminium alloy	Hard anodized
5	Slide table	Aluminium alloy	Hard anodized
6	Piston yoke	Aluminium alloy	Hard anodized
7	Piston	Aluminium alloy	Chromated
8	Wear ring	Special resin	
9	Belt separator	Special resin	
10	Parallel pin	Stainless steel	
11	Cushion ring	Aluminum alloy	Anodized
12	Cushion needle	Rolled steel	Nickel plated
13	Belt clamp	Special resin	
16	Cam follower	_	
17	Eccentric gear	Stainless steel	
18	Gear fixture	Stainless steel	
19	Adjustment gear	Stainless steel	
20	Retaining ring	Stainless steel	
21	End cover	Aluminium alloy	Hard anodized
23	Bearing	Special resin	
24	End plate	Aluminium alloy	Hard anodized
25	Stopper	Carbon steel	Nickel plated after quenching
26	Top cover	Stainless steel	
27	Side cover	Aluminium alloy	Hard anodized

Ī	No.	Description	Material	Note
	28	Cam follower cap	Aluminium alloy	Hard anodized
	29	Magnet	_	
	30	Magnet	_	
	31	Seal magnet	Rubber magnet	
	32	Rail	Hard steel wire material	
	33	Square nut	Carbon steel	Chromated
	34	Square nut	Carbon steel	Chromated
	35	Spring pin	Carbon tool steel	
	36	Parallel pin	Stainless steel	
	37	Hexagon socket set screw	Chrome molybdenum steel	Black zinc chromated
	38	Hexagon socket set screw	Chrome molybdenum steel	Black zinc chromated
	39	Hexagon socket set screw	Chrome molybdenum steel	Chromated
	40	Hexagon socket set screw	Chrome molybdenum steel	Chromated
	41	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
	42	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
	43	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
	44	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
	45	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
	46	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
	47	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
	48	Steel ball	Spring steel	Nickel plated
	54	Hexagon socket head (taper) plug	Carbon steel	Chromated
	55	Hexagon socket head (taper) plug	Carbon steel	Chromated
	56	Lube retainer	Special resin	

Replacement Parts: Seal Kit

No.	Description	Qty.	MY2C16G	MY2C25G	MY2C40G
14	Seal belt	1	MY16-16C-Stroke	MY25-16C-Stroke	MY40-16C-Stroke
15	Dust seal band	1	MY2H16-16B-Stroke	MY2H25-16B-Stroke	MY2H40-16B-Stroke
53	O-ring	2	KA00309	KA00309	KA00320
53	O-ring	2	(ø4 x ø1.8 x ø1.1)	(ø4 x ø1.8 x ø1.1)	(ø7.15 x ø3.75 x ø1.7)
22	Scraper	2			
49	Piston seal	2			
50	Cushion seal	2	MY2B16-PS	MY2B25-PS	MY2B40-PS
51	Tube gasket	2			
52	O-ring	4			

^{*} Seal kit includes ②, ④, ⑤, ⑤ and ⑤. Order the seal kit based on each bore size.

MY1B MY1H

MY1B

MY1M

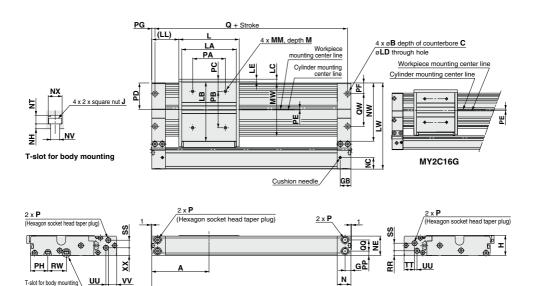
MY1C

MY1H MY1 HT

MY1 □W

MY2C MY2 H/HT MY3A

MY3B MY3M


D-□ -X□

Technical Data

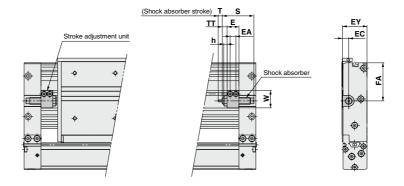
^{*} Seal kit includes a grease pack (10 g).
When (3 and (5 are shipped as single units, a grease pack (10 g per 1000 strokes) is included.
Order with the following part number when only the grease pack is needed.
Grease pack part number:GR-S-010 (10 g), GR-S-020 (20 g)

ø16, ø25, ø40

MY2C Bore size G - Stroke

																									(mm)
Model	Α	В	С	G	GB	Н	L	١,	J	LA	LB	LC	LD	LE	(LL)	LW	М	М	М	MW	N	NC	NE	NH	NT
MY2C16G	80	6.5	3.3	8.5	17	28	80	M3 :	k 0.5	70	72.4	6	3.4	5	40	104	7	M4 >	0.7	64.6	20	14	27	2	3.5
MY2C25G	105	9.5	5.4	10.7	19.5	37	110.8	M5 :	k 0.8	100	108.7	7	5.5	5	49.6	158	9	M5 >	8.0	97.5	25	21.3	35.5	3	5.3
MY2C40G	165	14	8.6	15.5	31.5	58	180	M6:	k 1	158	135.3	7	9	5	75	214	13	M6 >	(1	121.5	40	32.4	56.5	4	6.5
		_									_		_		_	_				_					_
Model	NV	NW	NX	F	•	PA	PB	PC	PD	PE	PF	PG	PH	PP	Q	QQ	QW	RR	RW	SS	TT	UU	٧٧	XX	Z
MY2C16G	3.4	69.2	5.8	M5 >	k 0.8	40	43	16.5	32	2.2	9.8	4	21.3	5.3	152	16.4	40	5.3	22	9.7	12.5	3	10.5	12	160
MY2C25G	5.5	106.8	8.5	1,	/8	60	67	22.2	48.7	0.8	19.5	6	31.8	8	198	20.4	60	8.5	34	14	19.3	4.4	15.3	14	210
MY2C40G	6.6	135.1	10.5	1,	/ ₄	100	77	29	60.5	8.5	40.5	9	38	16	312	25.5	57	11	45	21.5	35.4	2	29	23	330

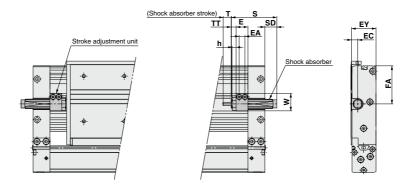
Z + Stroke


"P" indicates cylinder supply ports. * The plug for "P" MY2C16G is a hexagon socket head plug.

Mechanically Jointed Rodless Cylinder MY2C Series

Stroke adjustment unit

Low load shock absorber


MY2C Bore size G - Stroke L

Applicable cylinder	E	EA	EC	EY	FA	h	S	Т	TT	W	Shock absorber model
MY2C16	14.4	7	6	27	38.5	4	40.8	6	5.6 (Max. 11.2)	16.5	RB0806
MY2C25	17.5	8.5	9	36	56.4	5	46.7	7	7.1 (Max. 18.6)	25.8	RB1007
MY2C40	25	13	13.5	56.5	67.8	6	67.3	12	10 (Max. 26)	38	RB1412

High load shock absorber

MY2C Bore size G - Stroke H

Applicable cylinder	E	EA	EC	EY	FA	h	S	SD	Т	TT	W	Shock absorber model
MY2H25	17.5	8.5	9	36	56.4	6	67.3	17.7	12	7.1 (Max. 18.6)	25.8	RB1412
MY2H40	25	13	13.5	56.5	67.8	6	73.2	_	15	10 (Max. 26)	38	RB2015

MY1B MY1H MY1B

MY1M

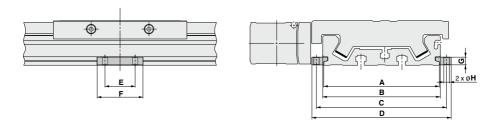
MY1C MY1H

MY1 HT

MY1 □W MY2C

MY2 H/HT MY3A MY3B

MY3M

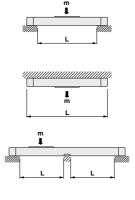

D-□

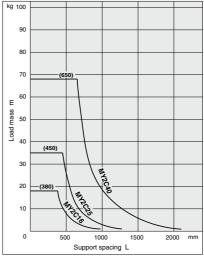
-X -Technical Data

Side Support

Side support MYC-S□A

Model	Applicable cylinder	Α	В	С	D	E	F	G	øΗ
MYC-S16A	MY2C16	60.6	64.6	70.6	77.2	15	26	4.9	3.4
MYC-S25A	MY2C25	95.9	97.5	107.9	115.5	25	38	6.4	4.5
MYC-S40A	MY2C40	121.5	121.5	134.5	145.5	45	64	11.7	6.6


^{*} A set of side supports consists of a left support and a right support.


Guide for Using Side Support

For long stroke operation, the cylinder tube may deflect due to its own weight and/or load mass. In such cases, install a side support at the intermediate stroke position. The spacing (L) of the side support must be no more than the values shown in the graph at right.

⚠ Caution

- ① If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Make sure to level the cylinder tube when mounting the cylinder. For long stroke operation involving vibration and impact, the use of side supports is recommended even if the support spacing is within the allowable limits shown in the graph.
- ② Support brackets are not for mounting. They should be used only to provide support.

MY1B

MY1H MY1B

MY1M

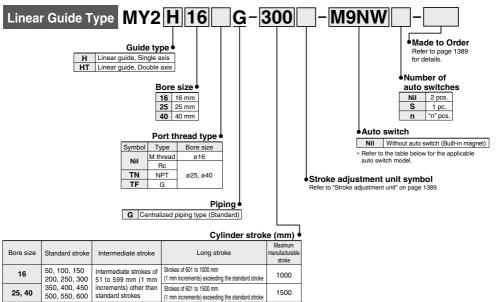
MY1C

MY1H

MY1 HT MY1

⊟W MY2C

MY2 H/HT MY3A MY3B


MY3M

Mechanically Jointed Rodless Cylinder Linear Guide Type

MY2H/HT Series

ø16, ø25, ø40

How to Order

Ordering example

* Intermediate stroke can be ordered the same as the standard stroke.

* Long stroke can be ordered the same as the standard stroke.

MY2H16-60-M9BW MY2H25-800L-M9BW

Applicable Auto Switches/Refer to pages 1575 to 1701 for further information on auto switches.

		Floridad	ig) A / :	L	oad voltag	je	Auto switc	h model	Lead	wire	ength	(m)	Door ordered									
Туре	Special function	Electrical entry	Indicator light	Wiring (Output)	1	DC	AC	Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	Pre-wired connector	Applicat	ble load							
				3-wire (NPN)		5 V. 12 V	M9NV	M9N	•	•	•	0	0	IC									
				3-wire (PNP)	5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit									
ه ج				2-wire		12 V		M9BV	M9B	•	•	•	0	0	_								
is is	Diagnostic indication (2-color indicator)					3-wire (NPN)		5 V. 12 V		M9NWV	M9NW	•	•	•	0	0	IC	Dalau					
s d		Grommet	Yes	3-wire (PNP) 24 V 2-wire	24 V 3 V, 12 V	_	M9PWV	M9PW	•	•	•	0	0	circuit	Relay, PLC								
Solid auto	(2-color indicator)				12 V		M9BWV	M9BW	•	•	•	0	0		FLC								
ω æ				3-wire (NPN)		5 V. 12 V		M9NAV*1	M9NA*1	0	0	•	0	0	IC								
	Water resistant (2-color indicator)			3-wire (PNP)		3 V, 12 V		M9PAV*1	M9PA*1	0	0	•	0	0	circuit								
	(2-color indicator)			2-wire		12 V		M9BAV*1	M9BA*1	0	0	•	0	0	_								
eed switch				Yes						Yes	3-wire (NPN equivalent)	_	5 V	_	A96V	A96	•	_	•	_	_	IC circuit	_
Reed auto swit		Grommet	50	O suine	2414	40.1/	100 V	A93V*2	A93	•	•	•	•	_	_	Relay,							
art			No	2-wire	24 V	12 V	100 V or less	A90V	A90	•	-	•	_	_	IC circuit	PLC							

^{*1} Water resistant type auto switches can be mounted on the above models, but in such case SMC cannot guarantee water resistance. Consult with SMC regarding water resistant types with the above model numbers.

* Lead wire length symbols: 0.5 m ······· Nil (Example) M9NW

1 m M (Example) M9NWM 3 m L (Example) M9NWL 5 m Z (Example) M9NWZ

- * Solid state auto switches marked with "O" are produced upon receipt of order.
- * There are other applicable auto switches than listed above. For details, refer to page 1398

^{*2 1} m type lead wire is only applicable to D-A93.

^{*} For details about auto switches with pre-wired connector, refer to pages 1648 and 1649.

* Auto switches are shipped together (not assembled). (Refer to page 1398 for the details of auto switch mounting.)

Mechanically Jointed Rodless Cylinder Linear Guide Type MY2H/HT Series

Made to Order: Individual Specifications (For details, refer to page 1399)

Symbol	Specifications
-X168	Helical insert thread

Made to Order Specifications

Click here for details

Symbol	Specifications
-XB20	Stroke adjusting unit with adjusting bolt
-XB22	Shock absorber soft type RJ series type
-XC56	With knock pin holes

Specifications

Di ()	40	0.5	40				
Bore size (mm)	16	25	40				
Fluid		Air					
Action	Double acting						
Operating pressure range	0.15 to 0.8 MPa						
Proof pressure	1.2 MPa						
Ambient and fluid temperature		5 to 60°C					
Cushion	Air	cushion, Shock absor	ber				
Lubrication	N	ot required (Non-lube	e)				
Stroke length tolerance	+1.8						
Port size	M5 x 0.8	Rc 1/4					

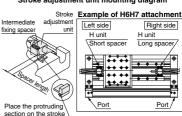
Piston Speed

Bore size (mm)	16	6	25	40	MY1B			
Without stroke adjustment unit	100 to 1000 mm/s Note 1)							
Stroke adjustment unit L unit and	H unit	100	100 to 1500 mm/s					

Note 1) When exceeding the air cushion stroke ranges on page 1376, the **piston speed** should be **100 to 200** mm/s.

Note 2) Use at a piston speed within the absorption capacity range. Refer to page 1376.

Stroke Adjustment Unit Specifications


Bore siz	Bore size (mm)			6	2	5	40		
Unit symbol		L	Н	L	Н	L	Н		
Shock absorber model MY2H		MY2H	RB0806	RB1007	RB1007	RB1412	RB1412	RB2015	
Snock absorber in	ioaei	MY2HT	RB1007	RB1412	RB1412	RB2015	RB2015	RB2725	
	Without	spacer	0 to	-5.6	0 to -	-11.5	0 to -16		
	With sho	ort spacer	−5.6 to	-11.2	-11.5	to –23	−16 t	o - 32	
fixing spacer (mm)	With Ion	g spacer	-11.2 to	o –16.8	-23 to	-34.5	-32 to −48		
Stroke adjustment range by intermediate Without spacer With short spacer		spacer ort spacer	0 to -5.6 to	-5.6 -11.2	0 to - -11.5	-11.5 to -23	0 to -16 t	-16 o -32	

^{*} Stroke adjustment range is applicable for one side when mounted on a cylinder.

Stroke Adjustment Unit Symbol

				Right side stroke adjustment unit									
		Without	L: With low load shock absorber H: With high load s										
			unit		With short spacer	With long spacer		With short spacer	With long spacer				
Without unit		Nil	SL	SL6	SL7	SH	SH6	SH7					
oke :	L: With	ow load shock	LS	L	LL6	LL7	LH	LH6	LH7				
şt.	absorbe	With short spacer	L6S	L6L	L6	L6L7	L6H	L6H6	L6H7				
g	=	With long spacer	L7S	L7L	L7L6	L7	L7H	L7H6	L7H7				
Left side stroke	H: With	high load shock	HS	HL	HL6	HL7	Н	HH6	HH7				
Left sic	absorbe	With short spacer	H6S	H6L	H6L6	H6L7	H6H	H6	H6H7				
		With long spacer	H7S	H7L	H7L6	H7L7	H7H	H7H6	H7				

Stroke adjustment unit mounting diagram

Shock Absorbers for L and H Units

Model	Type	Stroke adjustment	В	ore size (m	m)
iviouei	туре	unit	16	25	40
	Standard	L	RB0806	RB1007	RB1412
МҮ2Н	(Shock absorber/RB series)	Н	RB1007	RB1412	RB2015
WITZI	Shock absorber/soft type	L		RJ1412H	
	RJ series mounted (-XB22)	Н	RJ1007H	RJ1412H	_
	Standard	L	RB1007	RB1412	RB2015
MY2HT	(Shock absorber/RB series)	Н	RB1412	RB2015	RB2725
WITZETI	Shock absorber/soft type	L	RJ1007H	RJ1412H	_
	RJ series mounted (-XB22)	Н	RJ1412H	_	_

^{*} The shock absorber service life is different from that of the MY2H/HT cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

H7H6 | H7 | adjusting unit side. \ Shock Absorber Specifications

Mod	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725				
Max. energy at	osorption (J)	2.9	5.9	19.6	58.8	147			
Stroke absor	ption (mm)	6	7	12	15	25			
Max. collision s	speed (mm/s)	1500	1500	1500	1500	1500			
Max. operating frequ	uency (cycle/min)	80	70	45	25	10			
Spring	Extended	1.96	4.22	6.86	8.34	8.83			
force (N) Retracted		4.22	6.86	15.98	20.50	20.01			
Operating tempera	ature range (°C)	5 to 60							

The shock absorber service life is different from that of the MY2H/HT cylinder depending on operating conditions. Refer to the RB Series Specific Product Precautions for the replacement period.

Technical Data

D-□

MY1B

MY1M MY1C MY1H MY1 MY1

MY2C

MY2 H/HT

MY3A

MY3B

MY3M

Spacers are used to fix the stroke adjustment unit at an intermediate stroke position

Mounted shock absorber soft type RJ series (-XB22) is made to order specifications. For details, refer to page 1752.

MY2H/HT Series

Theoretical Output

								(N)			
Bore size	Piston area	Operating pressure (MPa)									
(mm)	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8			
16	200	40	60	80	100	120	140	160			
25	490	98	147	196	245	294	343	392			
40	1256	251	377	502	628	754	879	1005			

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Replacement Parts

Drive Unit (Cylinder) Replacement Part No.

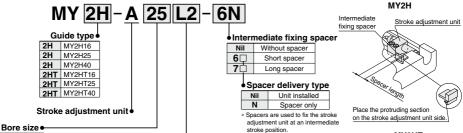
Bore size (mm)	MY2H	MY2HT
16	MY2BH16G	- Stroke
25	MY2BH25□G	- Stroke
40	MY2BH40□G	- Stroke

Enter a symbol for port thread type inside \square .

Note) Order auto switches separately.

Weight

						(kg)
Model	Bore	Basic	Additional weight per each	Weight of	Stroke adju weight (
Model	size (mm)	weight	50 mm of stroke	moving parts	L unit weight	H unit weight
	16	0.86	0.22	0.21	0.03	0.04
MY2H	25	2.35	0.42	0.64	0.06	0.09
	40	6.79	0.76	2.20	0.16	0.22
	16	1.27	0.31	0.33	0.04	0.08
MY2HT	25	3.70	0.61	1.20	0.10	0.18
	40	10.05	1.13	3.35	0.27	0.46

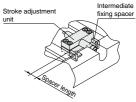

Calculation: (Example) MY2H25G-300L

 Basic weight ----- 2.35 kg Cylinder stroke ----- 300 stroke Additional weight------ 0.42/50 stroke

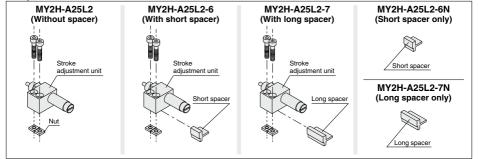
 $2.35 + 0.42 \times 300/50 + 0.06 \times 2 \cong 4.99 \text{ kg}$ Weight of L unit ---- 0.06 kg

Option

16	16 mm			Jnit no.
25	25 mm			
40	40 mm	Symbol	Stroke adjustment unit	Mounting position
		L1	L unit	Left
		L2	L unit	Right
		H1	11	Left


H2

Note) Refer to page 1389 for details about adjustment range.


Right

MY2HT * Spacers are shipped for a set of two.

 When ordering the intermediate fixing spacer for the stroke adjustment unit. the intermediate fixing spacer is shipped together.

Component Parts

^{*} Nuts are equipped on the cylinder body

MY1B

MY1H MY1B

MY1M

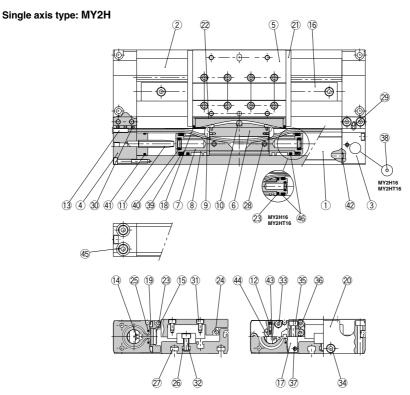
MY1C

MY1H

MY1 HT MY1

MY2C

MY2 H/HT MY3A MY3B

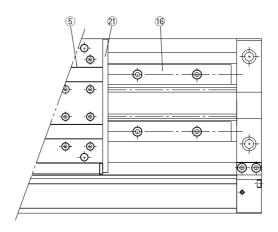

MY3M

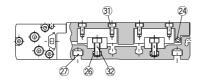
D-□

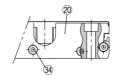
-X 🗆

MY2H/HT Series

Construction


Component Parts


••••			
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Body	Aluminum alloy	Anodized
3	Head cover WR	Aluminum alloy	Hard anodized
4	Head cover WL	Aluminum alloy	Hard anodized
5	Slide table	Aluminum alloy	Hard anodized
6	Piston yoke	Aluminum alloy	Hard anodized
7	Piston	Aluminum alloy	Chromated
8	Wear ring	Special resin	
9	Belt separator	Special resin	
10	Parallel pin	Stainless steel	
11	Cushion ring	Aluminum alloy	Anodized
12	Cushion needle	Rolled steel	Nickel plated
13	Belt clamp	Special resin	
16	Guide	_	
17	End cover	Aluminum alloy	Hard anodized
19	Bearing	Special resin	
20	End plate	Aluminum alloy	Hard anodized
21	Stopper	Carbon steel	Nickel plated after quenching
22	Top cover	Stainless steel	


	Description	14.1.2.1	N
No.		Material	Note
23	Magnet	_	
24	Magnet	_	
25	Seal magnet	Rubber magnet	
26	Square nut	Carbon steel	Chromated
27	Square nut	Carbon steel	Chromated
28	Spring pin	Carbon tool steel	
29	Parallel pin	Stainless steel	
30	Hexagon socket set screw	Chrome molybdenum steel	Black zinc chromated
31	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
32	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
33	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
34	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
35	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
36	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
37	Hexagon socket head cap screw	Chrome molybdenum steel	Chromated
38	Steel ball	Spring steel	Nickel plated
44	Hexagon socket head (taper) plug	Carbon steel	Chromated
45	Hexagon socket head (taper) plug	Carbon steel	Chromated
46	Lubretainer	Special resin	

Mechanically Jointed Rodless Cylinder Linear Guide Type MY2H/HT Series

Double axis type: MY2HT

Replacement Parts: Seal Kit

· . • F .					
No.	Description	Qty.	MY2H16G/MY2HT16G	MY2H25G/MY2HT25G	MY2H40G/MY2HT40G
14	Seal belt	1	MY16-16C-Stroke	MY25-16C-Stroke	MY40-16C-Stroke
15	Dust seal band	1	MY2H16-16B-Stroke	MY2H25-16B-Stroke	MY2H40-16B-Stroke
43	O-ring		KA00309	KA00309	KA00320
43	O-ring	2	(ø4 x ø1.8 x ø1.1)	(ø4 x ø1.8 x ø1.1)	(ø7.15 x ø3.75 x ø1.7)
18	Scraper	2			
39	Piston seal	2			
40	Cushion seal	2	MY2B16-PS	MY2B25-PS	MY2B40-PS
41	Tube gasket	2			
42	O-ring	4			

^{*} Seal kit includes (8, 39, 40, 41) and 42. Order the seal kit based on each bore size.

D
-X

Technical Data

MY1B

MY1H

MY1B
MY1M
MY1C
MY1H
MY1
HT
MY1
WY1
MY2C

MY3A MY3B

size.

Seal kit includes a grease pack (10 g).

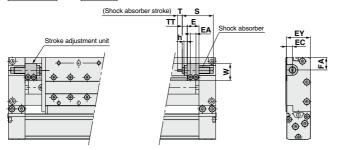
When 19 and 19 are shipped as single units, a grease pack (20 g) is included.

Order with the following part number when only the grease pack is needed.

Grease pack part number:GR-S-010 (10 g), GR-S-020 (20 g)

MY2H Bore size G - Stroke

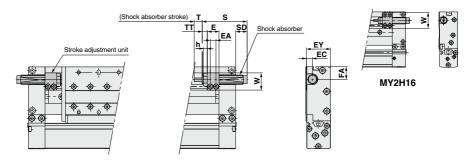
																											(mm)
Model	Α	В	С	G	GB	Н	L	J	_	LA	LB	LD	LE	(LL)	LW	M	MM	N	NC	NE	NH	NT	N۷	NW	NX		Р
MY2H16G	80	6.5	3.3	8.5	17	28	80	М3 х	0.5	70	50.4	3.4	4	40	83	7	M4 x 0.7	20	14	27	2	3.5	3.4	48.2	5.8	M5:	x 0.8
MY2H25G	105	9.5	5.4	10.7	19.5	37	110.8	M5 x	8.0	100	71.7	5.5	5	49.6	123	9	M5 x 0.8	25	21.3	35.5	3	5.3	5.5	71.8	8.5	1	/8
MY2H40G	165	14	32.5	15.5	31.5	58	180	M6 x	1	158	80.3	9	6	75	161	13	M6 x 1	40	32.4	56.5	4	6.5	6.6	82.1	10.5	1	/4
		_	_	_	_	_	-						_		_				_				_	_	_	_	
Model	PA	PE	3 PC	: PI	D PE	≣ PF	PG	PH	PP	Q	QQ	Q	W	R	RR	RW	/ SS	TI	[L	JΙ	JU	V۱	<i>'</i>	X	XX	Υ	Z
MY2H16G	40	40	7.2	2.	8 3.7	7 3.	5 4	5.1	5.3	152	16.4	1 4	10	5	5.3	40	9.7	12.	5 4	4 3	3	10.	5 (3	12	5	160
MY2H25G	60	60	8.2	6.	6 2.	7 5.	5 6	7.5	8	198	20.4	1 6	0	5	8.5	50	14	19.	3 !	5 4	.4	15.	3	7.5	14	5	210
MY2H40G	100	70	5.5	8.	5 5	17	9	9.5	16	312	25.5	5 5	7	8	11	53.5	5 21.5	35.	4 (3 2	2	29		• T	23	8	330


"P" indicates cylinder supply ports. * The plug for "P" MY2H16G is a hexagon socket head plug.

Mechanically Jointed Rodless Cylinder Linear Guide Type MY2H/HT Series

Stroke adjustment unit

Low load shock absorber


MY2H Bore size G - Stroke L

Applicable cylinder	E	EA	EC	EY	FA	h	S	Т	TT	W	Shock absorber model
MY2H16	14.4	7	6	27	12.5	4	40.8	6	5.6 (Max. 11.2)	16.5	RB0806
MY2H25	17.5	8.5	9	36	19.3	5	46.7	7	7.1 (Max. 18.6)	25.8	RB1007
MY2H40	25	13	13	57	17	6	67.3	12	10 (Max. 26)	38	RB1412

High load shock absorber

MY2H Bore size G - Stroke H

Applicable cylinder	E	EA	EC	EY	FA	h	S	SD	Т	TT	W	Shock absorber model
MY2H16	14.4	7	6	27	12.5	_	46.7	6.7	7	5.6 (Max. 11.2)	23.5	RB1007
MY2H25	17.5	8.5	9	36	19.3	6	67.3	17.7	12	7.1 (Max. 18.6)	25.8	RB1412
MY2H40	25	13	13	57	17	6	73.2	_	15	10 (Max. 26)	38	RB2015

MY1B MY1H

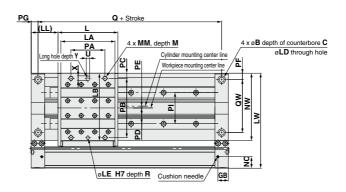
MY1B

MY1M MY1C

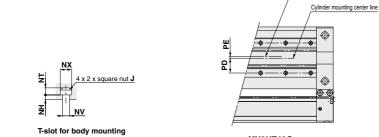
MY1H MY1 HT

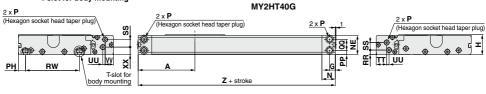
MY1 □W

MY2C MY2 H/HT MY3A MY3B


MY3M

D-□ -X□


Technical Data

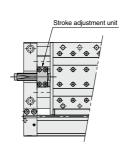

Double Axis Type: \emptyset 16, \emptyset 25, \emptyset 40

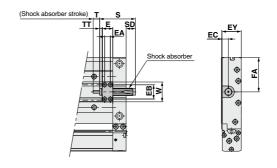
MY2HT Bore size G - Stroke

Workpiece mounting center line

Model	Α	В	С	G	GB	Н	L	,	J	LA	LB	LD	LE	(LL)	LW	М	MI	M	N	NC	NE	NH	NT
MY2HT16G	80	9.5	5.4	8.5	17	28	80	M4 x	0.7	70	87.4	5.5	5	40	120	9	M5 >	k 0.8	20	14	27	3	4.7
MY2HT25G	105	14	8.6	10.7	19.5	37	110.8	M6 x	:1	100	124.7	9	6	49.6	176	12	M8 >	x 1.25	25	21.3	35.5	4	6.5
MY2HT40G	165	17.5	10.8	15.5	31.5	58	180	M8 x	1.25	158	148.3	11	8	75	229	16	M10 >	k 1.5	40	32.4	56.5	5	9
Model	NV	NW	NX	F	•	PA	PB	PC	PD	PE	PF	PG	PH	PI	PP	Q	QQ	QW	R	RR	RW	SS	TT
Model MY2HT16G	NV 4.5	NW 85.2			• 0.8	PA 44	PB 80	PC 4	PD 23	PE 1	PF 10	PG 10	PH 10.2	_	PP 5.3	Q 140	QQ 16.4	QW	R 5	RR 5.3			TT 12.5
	4.5		7.3	M5 >						1			10.2		5.3	140					69		

1	√lodel	U	UU	VV	Х	XX	Y	Z
MY	2HT16G	5	3	10.5	7	12	5	160
MY	2HT25G	6	4.4	15.3	9	14	8	210
MY	2HT40G	8	2	29	12	23	12	330

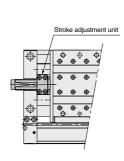

[&]quot;P" indicates cylinder supply ports. * The plug for "P" MY2HT16G is a hexagon socket head plug.

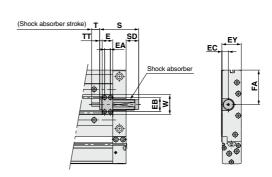

Mechanically Jointed Rodless Cylinder Linear Guide Type MY2H/HT Series

Stroke adjustment unit

Low load shock absorber

MY2HT Bore size G - Stroke L





Applicable cylinder	E	EA	EB	EC	EY	FA	S	SD	Т	TT	W	Shock absorber model
MY2HT16	14.4	7	21	8	27	46.5	46.7	6.7	7	5.6 (Max. 11.2)	28.6	RB1007
MY2HT25	19.7	10.7	26.6	11.2	36	64.8	67.3	17.7	12	4.9 (Max. 16.4)	37.2	RB1412
MY2HT40	29.1	15.1	37	17.2	57	74.5	73.2	_	15	5.9 (Max. 21.9)	51.6	RB2015

High load shock absorber

MY2HT Bore size G - Stroke H

Applicable cylinder	E	EA	EB	EC	EY	FA	S	SD	Т	TT	W	Shock absorber model
MY2HT16	14.4	7	21	8	27	46.5	67.3	27.3	12	5.6 (Max. 11.2)	28.6	RB1412
MY2HT25	19.7	10.7	26.6	11.2	36	64.8	73.2	23.6	15	4.9 (Max. 16.4)	37.2	RB2015
MY2HT40	29.1	15.1	37	17.2	57	74.5	99	24	25	5.9 (Max. 21.9)	51.6	RB2725

MY1B MY1H

MY1B

MY1M MY1C

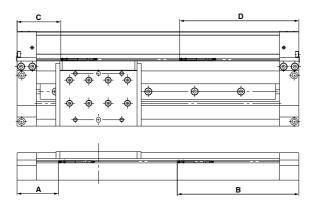
MY1H MY1 HT

MY1 □W MY2C

MY2 H/HT MY3A MY3B MY3M

D-□

-X□ Technical Data



MY2 Series

Auto Switch Mounting

Proper Auto Switch Mounting Position (Detection at stroke end)

Note) The operating range is a standard including hysteresis, and is not guaranteed. There may be large variations depending on the surrounding environment (variations on the order of $\pm 30\%$).

D-A9□. D-A9□V

,			
Series model	Α	В	Operating range
MY2C16	44	116	
MY2H16	46	114	
MY2HT16	70	90	11
MY2C/H/HT25	54	156	
MY2C/H/HT40	85	245	

	_	_		
Series model	С	D	Operating range	
MY2C/H/HT16	27.6	132.4	6.5	
MY2C/H/HT25	69	141		
MY2C/H/HT40	90.2	239.8	11	

D-M9\(\tau\), D-M9\(\tau\), D-M9\(\tau\), D-M9\(\tau\), D-M9\(\tau\)

,,,,,					
Α	В	Operating range			
48	112				
50	110				
74	86	8.5			
58	152				
89	241				
	48 50 74 58	48 112 50 110 74 86 58 152			

Series model	С	D	Operating range	
MY2C/H/HT16	31.6	128.4	4	
MY2C/H/HT25	73	137	0.5	
MY2C/H/HT40	94.2	235.8	8.5	

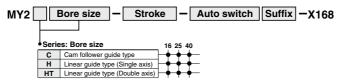
^{*} Adjust the auto switch after confirming the operating conditions in the actual setting.

Besides the models listed in How to Order, the following auto switches are applicable.

* For solid state auto switches, auto switches with a pre-wired connector are also available. Refer to pages 1648 and 1649 for details.
* Normally closed (NC = b contact) solid state auto switches (D-F9G/F9H types) are also available. Refer to page 1593 for details.

MY2 Series

Made to Order: Individual Specifications


Please contact SMC for detailed dimensions, specifications and lead times.

1 Helical Insert Thread Specifications

Symbol -X168

Helical insert thread is used for the slide table mounting thread, the thread size is the same as the standard model.

Example) MY2H40G-300L-A93-X168

MY1B MY1H

MY1B

MY1M

MY1C

MY1H MY1 HT

MY1

MY2C

MY2 H/HT MY3A MY3B

MY3M

MY2 Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Selection

1. When using a cylinder with long strokes, implement an intermediate support.

When using a cylinder with long strokes, implement an intermediate support to prevent the tube from sagging and being deflected by vibration or an external load.

Refer to the Guide for Side Support Application (MY2C series) on page 1386.

2. For intermediate stops, use a dual-side pressure control circuit.

Since the mechanically jointed rodless cylinders have a unique seal structure, slight external leakage may occur. Controlling intermediate stops with a 3 position valve cannot hold the stopping position of the slide table (slider). The speed at the restarting state also may not be controllable. Use the dual-side pressure control circuit with a PAB-connected 3 position valve for intermediate stops.

3. Constant speed

Since the mechanically jointed rodless cylinders have a unique seal structure, a slight speed change may occur. For applications that require constant speed, select an applicable equipment for the level of demand.

4. Load factor of 0.5 or less

When the load factor is high against the cylinder output, it may adversely affect the cylinder (condensation, etc.) and cause malfunctions. Select a cylinder to make the load factor less than 0.5. (Mainly when using an external guide)

5. Cautions on less frequent operation

When the cylinder is used extremely infrequently, operation may be interrupted in order for anchoring and a change lubrication to be performed or service life may be reduced.

Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment

Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

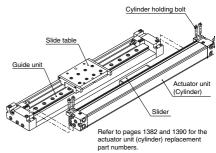
7. Accuracy

The mechanical jointed rodless cylinder does not guarantee traveling parallelism. When accuracy in traveling parallelism and a middle position of stroke is required, please consult with SMC.

Mounting

⚠ Caution

1. Do not apply a strong impact or moment on the slide table (slider).


Since the slide table (slider) is supported by precision bearings, do not subject it to strong impact or excessive moment when mounting workpieces.

When connecting to a load which has an external guide mechanism, use a discrepancy absorption mechanism.

A mechanically jointed rodless cylinder can be used with a direct load within the allowable range for each guide type, however, align carefully when connecting to a load with an external guide mechanism.

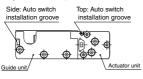
3. Attaching and detaching the actuator unit (cylinder)

When detaching the actuator unit, remove the four cylinder holding bolts and take the actuator unit off the guide unit. When attaching the actuator unit, insert the slider into the slide table on the guide unit, and tighten the four holding bolts equally. Since loosened holding bolts may cause damage or malfunction, be sure to secure them tightly.

MY2 Series Specific Product Precautions 2

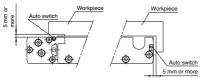
Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Mounting

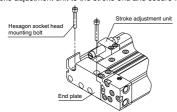

4. Auto Switch Mounting

The MY2 series can be equipped with auto switches on the top of the actuator unit (cylinder) and on the side of the guide unit, but use caution in the following cases.

<Mounting an auto switch on the top of the actuator unit (cylinder)>


For auto switches with perpendicular electrical entry, the lead wire may interfere with the workpiece depending on the workpiece mounting type and shape.

Be sure to allow a clearance in order to keep the lead wire from interfering with the workpiece.

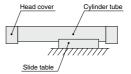

5. Workpiece Mounting

When mounting a magnetic workpiece, the auto switch may stop working due to a loss of magnetic force in the cylinder depending on the mounting position. Allow a clearance of 5 mm or more between the auto switch and workpiece.

6. Body Mounting

When mounting MY2H40G with stroke adjustment unit from the top, move the stroke adjustment unit and secure the body with the end plate mounting holes. After mounting, return the stroke adjustment unit to the stroke end and secure it again.

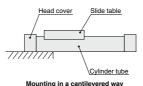
7. Do not generate negative pressure in the cylinder tube.

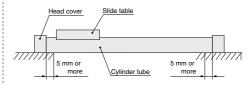

Take precautions under operating conditions in which negative pressure is generated inside the cylinder by external forces or inertial forces. Air leakage may occur due to separation of the seal belt. Do not generate negative pressure in the cylinder by forcibly moving it with an external force during the trial operation or dropping it with self-weight under the non-pressure state, etc. When the negative pressure is generated, slowly move the cylinder by hand and move the stroke back and forth. (When using with a stroke adjustment unit, please either remove the unit or adjust the stroke to the full stroke.) After doing so, if air leakage still occurs, please consult with SMC.

8. Do not mount cylinders as they are twisted.

When mounting, be sure for a cylinder tube not to be twisted. The flatness of the mounting surface is not appropriate, the cylinder tube is twisted, which may cause air leakage due to the detachment of a seal belt, damage a dust seal band, and cause malfunctions.

9. Do not mount a slide table on the fixed equipment surface.


It may cause damage or malfunctions since an excessive load is applied to the bearing.


Mounting with a slide table (slider)

10.Consult with SMC when mounting in a cantilevered way.

Since the cylinder body deflects, it may cause malfunctions. Please consult with SMC when using it this way.

11. Fixed parts of the cylinder on both ends must have at least 5 mm of contact between where the bottom of the cylinder tube and the equipment surface.

12.Consider uncalculated loads such as piping, cableveyor, etc., when selecting a load moment

Calculation does not include the external acting force of piping, cableveyor, etc. Select load factors taking into account the external acting force of piping, cableveyor, etc.

13.Do not unnecessarily alter the guide adjustment setting.

The adjustment of the guide is preset and does not require readjustment under normal operating conditions. Therefore, do not unnecessarily alter the guide adjustment setting.

Technical

MY1B

MY1H

MY1B

MY1M

MY1C

MY1H

MY1

MY1

 $\square W$

MY2C

MY3A

MY3B

MY3N

нт

MY2 Series Specific Product Precautions 3

Be sure to read this before handling the products. Refer to back page 50 for Safety Instructions and pages 3 to 12 for Actuator and Auto Switch Precautions.

Operating Environment

\land Warning

1. Do not use in environments where the cylinder will come in contact with coolants, cutting oil, water drops, adhesive foreign particles, dust, etc., and do not operate the cylinder with compressed air that contains drainage and foreign matter.

Foreign matter or liquids on the cylinder interior or exterior can wash away the lubricating grease, which can lead to deterioration and damage of the dust seal band and seal materials, causing a danger of malfunction.

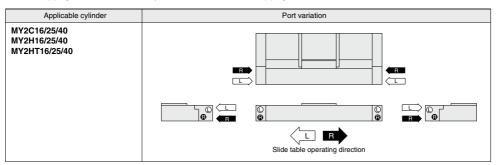
When operating in locations with exposure to water, oil drops, or dust, provide protection such as a cover to prevent direct contact with the cylinder, or mount the dust seal band surface downwards, and operate it with clean compressed air.

2. Carry out cleaning and grease application suitable for the operating environment.

Carry out cleaning regularly when using in an operating environment in which the product is likely to get dirty.

After cleaning, be sure to apply grease to the top side of the cylinder tube and the rotating part of the dust seal band. Apply grease to these parts regularly even if not after cleaning. Please consult with SMC for the cleaning of the slide table (slider) interior and grease application.

Service Life and Replacement Period of Shock Absorber


⚠ Caution

- 1. Allowable operating cycle under the specifications set in this catalog is shown below.
 - 1.2 million times RB08□□
 - 2 million times RB10□□ to RB2725
 - Note) Specified service life (suitable replacement period) is the value at room temperature (20 to 25 °C). The period may vary depending on the temperature and other conditions. In some cases the absorber may need to be replaced before the allowable operating cycle above.

Centralized Piping Port Variations

Head cover piping connection can be freely selected to best suit different piping conditions.

