1/26

RE 24751-XD/04.16 Replaces: 08.12

4/2 and 4/3 directional valves, internally pilot-operated, externally pilot-operated

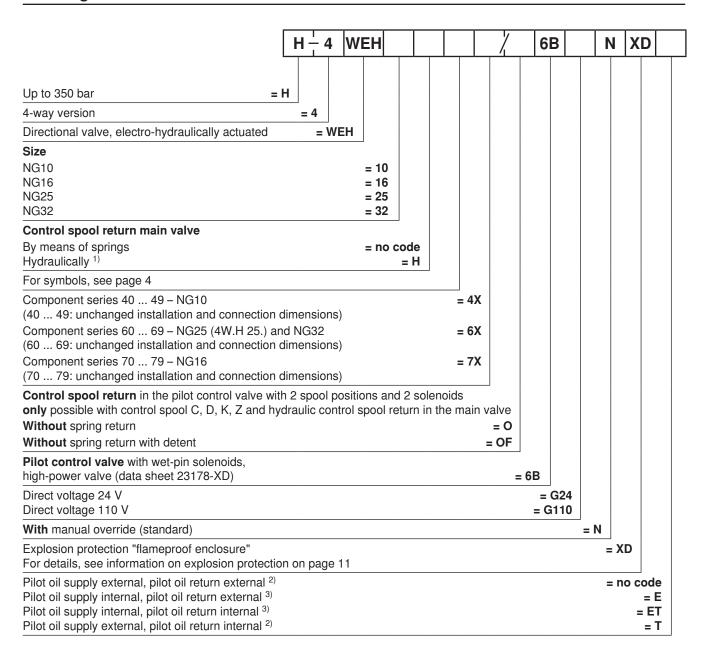
Type H-4WEH ...XD

Sizes 10, 16, 25, 32 Component series 4X, 6X, 7X Maximum operating pressure 350 bar Maximum flow 1100 l/min

ATEX units - For potentially explosive atmospheres

Information on explosion protection:

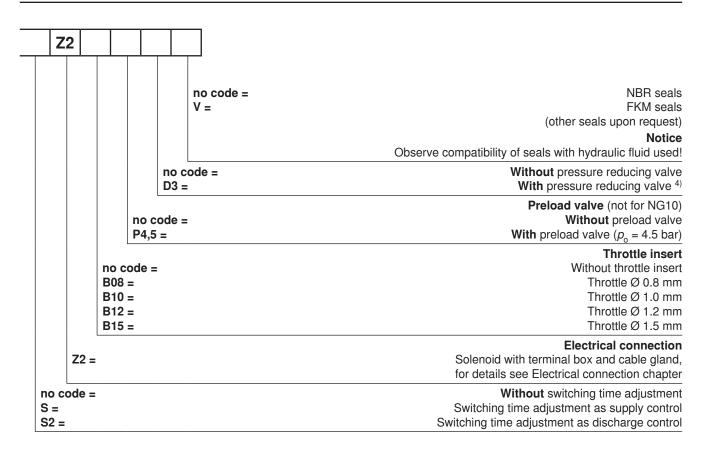
- ▶ Area of application in accordance with the Explosion Protection Directive 2014/34/EU: I M2; II 2G
- ► Type of protection of the valve solenoids: Ex db I Mb, Ex db IIC T4 Gb according to EN 60079-0 / EN 60079-1


Table of contents

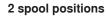
Contents	Page
Features	1
Ordering code	2, 3
Symbols	4 7
Function, section	8
Pilot oil supply	9
Technical data	9 12
Electrical connection	13, 14
Characteristic curves	15 18
Performance limits	15 19
Switching time adjustment, pressure reducing valve,	
preload valve	20
Dimensions	21 25
Further information	26

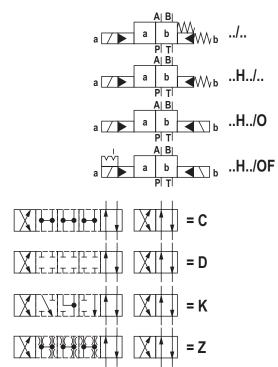
Features

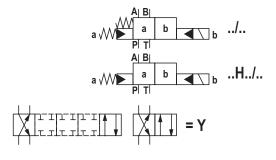
- For intended use in potentially explosive atmosphere
- For subplate mounting
- 2, 3 Porting pattern according to ISO 4401
- 1...7 Subplates available in version "J3"
 - Spring centering, spring end position or hydraulic end position
 - Wet-pin DC solenoids
 - Manual override
 - Electrical connection as individual connection with cable gland
 - Switching time adjustment, optional
 - Preload valve in channel P of the main valve, optional


Ordering code

Notice:

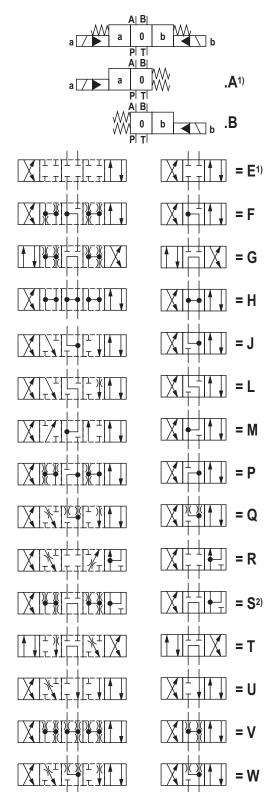

The manual override cannot be allocated a safety function and may only be used up to a tank pressure of 50 bar.


Ordering code

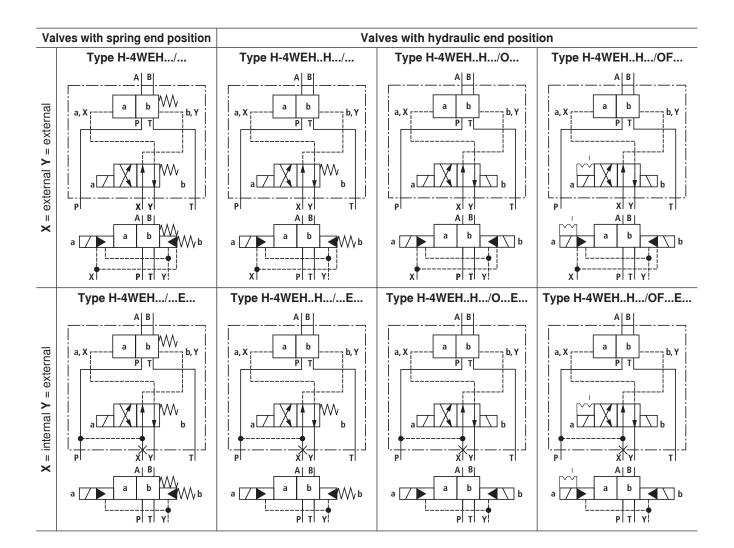


- 1) 2 spool positions (hydraulic end position): only symbols C, D, K, Z, Y
- $^{2)}$ External pilot oil supply X or pilot oil return Y:
 - Observe the maximum pilot pressure according to page 10!
- 3) Internal pilot oil supply (version "ET" and "E"):
 - Observe the maximum pilot pressure according to page 10.
 - Observe the minimum pilot pressure according to page 10!
 - In order to prevent inadmissibly high pressure peaks, a throttle insert "B10" has to be provided in port P of the pilot control valve (see page 9).
 - You must moreover provide the pressure reducing valve "D3".
- 4) Only in connection with throttle insert "B10"

Symbols

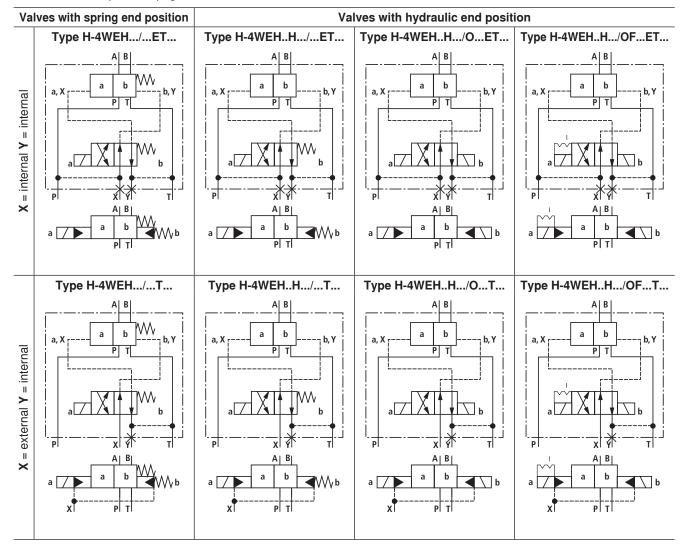


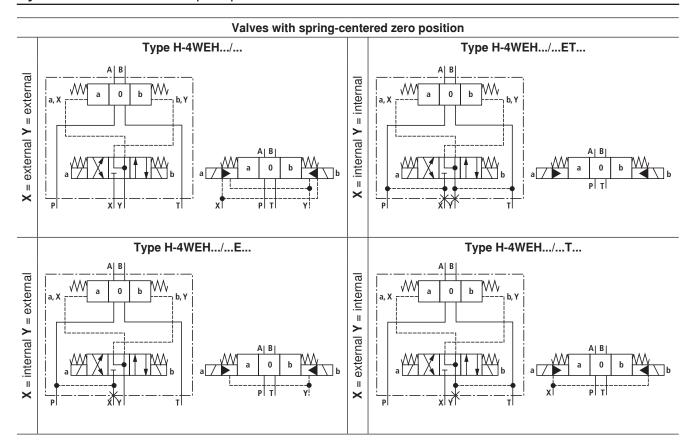
- 1) Example: Symbol E with switching position "a" Order example: H-4WEH 16 EA7X/6EG24N9XDETSZ2B10..V...
- ²⁾ Symbol S only for NG16


Notices:

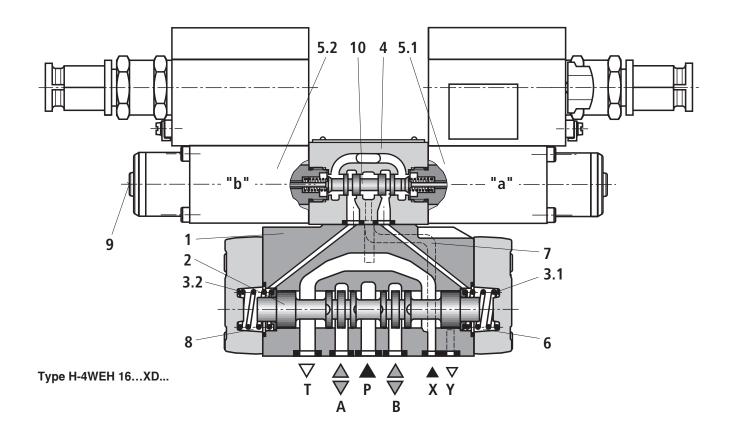
- Representation of the symbols according to DIN ISO 1219-1.
 Hydraulic interim positions are represented by dashes.
- Other symbols upon request

3 spool positions


Symbols: Valve with 2 spool positions


Continuation, see next page

Symbols: Valve with 2 spool positions


Continuation from previous page

Symbols: Valves with 3 spool positions

Function, section

Directional valve type H-4WEH...

The valve type H-4WEH is a directional spool valve with electro-hydraulic actuation. It controls the start, stop and direction of a flow.

The directional valve basically consists of the main valve with housing (1), the main control spool (2), one or two return springs (3.1) and (3.2), as well as the pilot control valve (4) with one or two solenoids "a" (5.1) and/or "b" (5.2).

The main control spool (2) in the main valve is held in the zero or initial position by the springs or by means of pressurization. In the initial position, the two spring chambers (6) and (8) are connected with the tank in a depressurized form via the pilot control valve (4). The pilot control valve is supplied with pilot oil via the control line (7). Supply can be effected internally or externally (externally via port X).

Upon actuation of the pilot control valve, e. g. solenoid "a", the pilot control spool (10) is moved to the left and thus, the spring chamber (8) is pressurized with pilot pressure. The spring chamber (6) remains depressurized.

The pilot pressure acts on the left side of the main control spool (2) and moves it against the spring (3.1). This connects ports P with B and A with T in the main valve.

When the solenoid is switched off, the pilot control spool returns into the initial position (except for impulse spool). The spring chamber (8) is unloaded to the tank.

The pilot oil from the spring chamber is displaced into channel Y via the pilot control valve.

The pilot oil supply and return can be effected internally or externally.

The manual override (9) allows control spool (10) to be moved without solenoid energization.

Notices:

The main control spool (2) is held in central position by the return springs (3.1) and (3.2) in spring chambers (6) and (8) without pilot pressure, even if the valve is positioned for example vertically.

Due to the design principle, internal leakage is inherent to the valves, which may increase over the life cycle.

Pilot oil supply

Type H-4WEH...

The pilot oil supply is effected **externally** via the X channel from a separate circuit.

The pilot oil return is effected **externally** via the Y channel into the tank.

Type H-4WEH...E...

The pilot oil supply is effected **internally** from the P channel of the main valve.

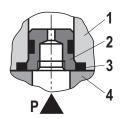
The pilot oil return is effected **externally** via the Y channel into the tank. In the subplate, port X is closed.

Type H-4WEH...ET...

The pilot oil supply is effected **internally** from the P channel of the main valve.

The pilot oil return is effected **internally** via the T channel into the tank. In the subplate, ports X and Y are closed.

Type H-4WEH...T...


The pilot oil supply is effected **externally** via the X channel from a separate circuit.

The pilot oil return is effected **internally** via the T channel into the tank. In the subplate, port Y is closed.

Throttle insert

Use of the throttle insert (2) is necessary if the pilot oil supply in the P channel of the pilot control valve (1) is to be limited.

The throttle insert (2) is inserted in channel P of the pilot control valve (1).

- 1 Pilot control valve
- 2 Throttle insert
- 3 Seal ring
- 4 Main valve

Technical data

				Any; horizontal with valves with hydraulic control spool return "H" and control spool C, D, K, Z or Y			
					i spool C, D, K, Z	or Y	
Ambient	temperature range		°C	<i>−</i> 20 +80			
Storage	temperature range		°C	+5 +40			
Maximum storage time Years 1							
Sizes			NG	10	16	25	32
Weight	Valve with one solenoid		kg	11	13.5	22	39
	Valve with two solenoids, spring-centered		kg	14	16.5	25	42
	Switching time adju	Switching time adjustment		0.8			
	Pressure reducing	valve	kg	0.4			
Surface	Valve body	Pilot control valve		Galvanized			
protectio	n	Main valve		Galvanized			
	Solenoid			Galvanized			
MTTFd \	value according to El	N ISO 13849	Years	100			

Technical data

hydraulic							
Sizes		NG	10		16	25	32
Maximum operating	pressure						
Ports P, A, B		bar	350				
Port T	with pilot oil return Y external	bar	250				
	with pilot oil return Y internal	bar	210				
Port Y	with pilot oil return external	bar	210				
Flow of the main val	ve	l/min	up to 1	60	up to 300	up to 650	up to 1100
Maximum pilot press	sure	bar	,	_	her pilot pressuquired)	ire, use of a pres	sure reducino
	ure ternal pilot oil supply X K, E, J, L, M, Q, R, U, W)						
3-spool position valve, spring-centered bar			10		14	13	8.5
2-spool position valve, spring end position be		on bar	10		14	13	10
2-spool position valve, hydraulic end position bar			7		14	8	5
 with internal pilot of control spool C, F 	oil supply X ^F , H, P, T, V, Z, S ¹⁾)	bar	6.5 ²	2)	4.5 ³⁾	4.5 ³⁾	4.5 ³⁾
Pilot volume for swit	ching process						
3-spool positio	n valve, spring-centered	cm ³	2.04	ŀ	5.72	14.2	29.4
2-spool positio	n valve	cm ³	4.08	3	11.45	28.4	58.8
Pilot volume for sho	rtest switching time	l/min	approx.	. 35	approx. 35	approx. 35	approx. 45
Hydraulic fluid			See table below				
Hydraulic fluid tempe	erature range	°C	2 -20 +80 (NBR seals)				
			-15 +80 (FKM seals)				
Viscosity range mm²/s			s 2.8 500				
Maximum admissible degree of contamination of the hydraulic fluid Cleanliness class according to ISO 4406 (c)			Class 20/18/15 ⁷⁾				
Maximum surface te		°C	See infor	mation	n on explosion p	protection on pag	je 11
Hydraulic fluid Classification			I .	Suitab materi	ole sealing	Standards	Data sheet

Hydraulic fluid		Classification	Suitable sealing materials	Standards	Data sheet
Mineral oils		HL, HLP, HLPD	NBR, FKM	DIN 51524	90220
Bio-degradable	► Insoluble in water	HETG	NBR, FKM	ISO 15380	90221
		HEES	FKM		
	► Soluble in water	HEPG	FKM	ISO 15380	
Flame-resistant	► Containing water	HFC (Fuchs Hydro- therm 46M, Petrofer Ultra Safe 620)	NBR	ISO 12922	90223

Important information on hydraulic fluids:

- ► For further information and data on the use of other hydraulic fluids, please refer to the data sheets above or contact us!
- ➤ There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.)!
- ▶ Ignition temperature > 180 °C

► Flame-resistant – containing water:

- Maximum pressure differential per control edge 50 bar
- Pressure pre-loading at the tank port > 20% of the pressure differential, otherwise increased cavitation
- Life cycle as compared to operation with mineral oil HL, HLP 50 to 100%

Technical data

electric		
Voltage type		Direct voltage
Available voltages	V	24, 110
Voltage tolerance (nominal voltage)	%	±10
Admissible residual ripple	%	< 5
Duty cycle / operating mode according to VDE 0580		S1 (continuous operation)
Switching time according to ISO 6403 8)		See page 12
Maximum switching frequency	1/h	15000
Switch-off voltage peak Solenoid	V	Up to 500 V (suitable damping by user required)
Nominal power at an ambient temperature of 20 °C	W	13
Maximum power with 1.1 x nominal voltage and an ambient temperature of 20 °C	W	15.8
Protection class according to EN 60529		IP 65 (with correctly installed electrical connection)

Information on explosion protection

miermanen en expression protestion	
Area of application according to directive 2014/34/EU	I M2, II 2G
Type of protection valve	c (EN 13463-5)
Maximum surface temperature ⁹⁾ °C	130
Temperature class	T4
Type of protection valve solenoid according to EN 60079-0 / EN 60079-1	Ex db I Mb Ex db IIC T4 Gb
Type examination certificate Solenoid	BVS 03 ATEX E 300 X
"IEC Certificate of Conformity" Solenoid	IECEx BVS 11.0091 X
Special application conditions for safe application	 In case of bank assembly, only one solenoid of all valves may be energized at a time.
	 In case of valves with two solenoids, maximally one of the solenoids may be energized at a time.
Ambient temperature range °C	-20 +80

- 1) Symbol S only for Size 16
- $^{2)}$ For symbols C, F, G, H, P, T, V, Z, an internal pilot oil supply without preload valve is only possible if the flow from P \rightarrow T in the central position (for 3-spool position valve) or while crossing the central position (for 2-spool position valve) is so large that the pressure differential of P \rightarrow T reaches a value of at least 6.5 bar.
- ³⁾ For symbols C, F, G, H, P, T, V, Z, S ¹⁾ by means of a preload valve (not Size 10) or a correspondingly high flow.
- 6) If HFC hydraulic fluid is used, the following parameters have to be adhered to: Pressure at P, A, B max. 160 bar, at T max. 3 bar (with E, ET and T) and/or at X max. 160 bar and Y max. 3 bar Ambient temperature 0 ... 36 °C Hydraulic fluid temperature max. 55 °C

Duty cycle 60%

Only NBR seals are admissible. For further information, please contact our sales department.

- The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters, see www.boschrexroth.com/filter.
- 8) The switching times were determined at a hydraulic fluid temperature of 40 °C and a viscosity of 46 cSt. Deviating hydraulic fluid temperatures can result in different switching times. Switching times change dependent on operating time and application conditions.
- ⁹⁾ Surface temperature > 50 °C, provide contact protection

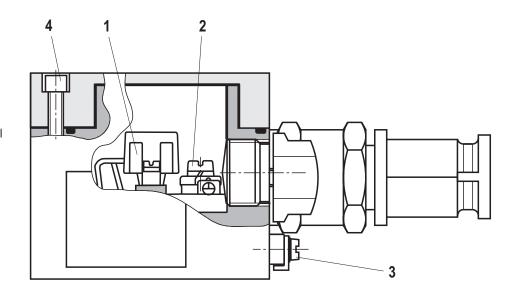
Technical data

Switching times (= Contacting at the pilot control valve until start of opening of the control edge in the main valve and change in the control spool stroke by 95%)

Pilot pressure		bar	70	250	Spring
			0	ON	
NG10	without throttle insert	ms	50 70	50 70	30 40
	with throttle insert	ms	70 100	60 80	30 40
NG16	without throttle insert	ms	60 90	50 70	60 90
	with throttle insert	ms	120 140	90 110	60 90
NG25	without throttle insert	ms	80 110	60 80	110 140
	with throttle insert	ms	210 260	130 160	110 140
NG32	without throttle insert	ms	90 140	80 110	150 170
	with throttle insert	ms	430 570	240 360	150 170

Notices:

- The switching times are measured according to ISO 6403 with HLP46, ϑ_{oil} = 40 °C ± 5 °C. With different oil temperatures, variations are possible.
- The switching times increase by approx. 30 ms if the pressure reducing valve "D3" is used.
- The switching times have been determined under ideal conditions and may differ in the system, depending on the application conditions.


Free flow cross-sections in zero position with control spools Q, V and W

	-						
Control spool Q	A – T, B – T	mm²	13	32	78	83	78
Control spool V	A – T, B – T	mm²	13	32	73	83	73
	P – A, P – B	mm ²	13	32	84	83	84
Control spool W	A – T, B – T	mm ²	2.4	6	10	14	20

Electrical connection

The type-examination tested valve solenoid of the valve is equipped with one terminal box and a type-tested cable entry.

The connection is polarity-independent.

Notice

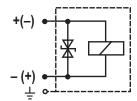
When establishing the electrical connection, the protective earthing conductor (PE $\frac{1}{=}$) has to be connected properly.

Properties of the connection terminals and mounting elements

	3	
Position	Function	Connectable line cross-section
1	Operating voltage connection	Single-wire max. 2.5 mm ²
		Finely stranded max. 2.5 mm ²
2	Connection for protective earthing conductor	Single-wire 0.75 2.5 mm ²
		Finely stranded 0.75 1.5 mm ²
3	Connection for potential equalization conductor	Single-wire 4 6 mm ²
		Finely stranded min. 4 mm ²
4	Screws for cover	-

Cable gland

Line diameter mm	912
Sealing	Outer sheath sealing


Connection line

Line type	Non-armored cables and lines (outer sheath sealing)
Temperature range °C	–20 > +110

Electrical connection

Circuit diagram

Direct voltage, polarity-independent

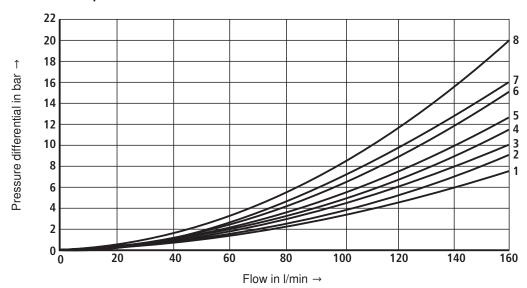
Over-current fuse and switch-off voltage peak

Notice

A fuse which corresponds to the rated current according to DIN 41571 and EN / IEC 60127 has to be connected upstream of every valve solenoid (max. 3 x $I_{\rm rated}$).

The shut-off threshold of the fuse has to match the prospective short-circuit current of the supply source.

The prospective short-circuit current of the supply source may amount to a maximum of 1500 A.


This fuse may only be installed outside the potentially explosive atmosphere or must be of an explosion-proof design.

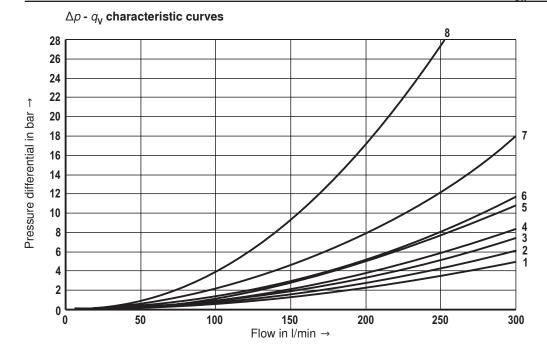
When inductivities are switched off, voltage peaks result which may cause faults in the connected control electronics. The voltage peak must be damped by a suitable external circuitry. We recommend a circuitry with a suppressor diode with a limitation voltage of approx. 50 V.

Voltage data in the valve type code	Nominal voltage valve solenoid	Rated current valve solenoid	Recommended pre-fuse medium time-lag characteristic according to DIN 41571	Maximum voltage value upon switch-off	Interference protection circuit
G24	24 V DC	0.542 A DC	630 mA	–90 V	Suppressor diode
G110	110 V DC	0.118 A DC	125 mA	–390 V	bi-directional

Characteristic curves: Type H-4WEH 10... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

Characteristic curve selection

Symbol	Spool position				Symbol		Zero position		
	P – A	P – B	A – T	B – T		A – T	B – T	P – T	
E, Y, D	2	2	4	5					
F	1	4	1	4	F	3	-	6	
G, T	4	2	2	6	G, T	_	-	7	
H, C	4	4	1	4	Н	1	3	5	
J, K	1	2	1	3					
L	2	3	1	4	L	3	-	_	
М	4	4	3	4					
Р	4	1	3	4	Р	-	7	5	
Q, V, W, Z	2	2	3	5					
R	2	2	3	_					
U	3	3	3	4	U	_	4	_	


Performance limits: Type H-4WEH 10... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

2- and 3-spool position valves

 ${\rm maximum\ flow\ } q_{\rm V} {\rm\ in\ l/min}$

Symbol	Operating pressure p _{max} in bar						
	200	250	315				
E, J, L, M, Q, R, U, V, W, C, D, K, Z, Y	160	160	160				
Н	160	150	120				
G, T	160	160	140				
F, P	160	140	120				

Characteristic curves: Type H-4WEH 16... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

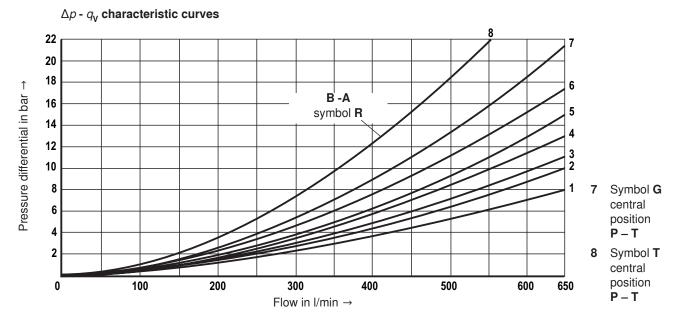
Symbol	Spool position							
	P – A	P-A P-B A-T B-T P						
E, Y, D	1	1	3	4	_			
F	1	1	5	4	_			
G, T	4	1	5	5	7			
H, C, Q, V, Z	1	1	5	6	_			
J, K, L	1	1	5	6	-			

Symbol	Spool position								
	P-A	P-A P-B A-T B-T P-7							
M, W	1	1	3	4	_				
R	1	1	3	_	_				
U	2	2	3	5	_				
S	3	3	3	_	8				

Performance limits: Type H-4WEH 16... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

2-spool position valve maximum flows **q**., in I/mi

maximum flows q _V in I/min								
Symbol	Ol	Operating pressure p _{max} in bar						
	70	140	210	280	350			
X external, spring end position in the main valve								
(with p _{St min} =	12 bar)							
C, D, K, Y, Z	300	300	300	300	300			
X external, spring end position in the main valve 1)								
С	300	300	300	300	300			
D, Y	300	270	260	250	230			
K	300	250	240	230	210			
Z	300	260	190	180	160			
X external, hydraulic end position in the main valve								
HC, HD, HK, HZ, HY	300	300	300	300	300			


3-spool position valve maximum flows $\mathbf{q}_{\mathbf{V}}$ in I/min

Symbol	Operating pressure p _{max} in bar						
	70	140	210	280	350		
X external, spring centering in the main valve							
E, H, J, L, M, Q, U, W, R	300	300	300	300	300		
F, P	300	250	180	170	150		
G, T	300	300	240	210	190		
S	300	300	300	250	220		
V	300	250	210	200	180		

¹⁾ If the specified flow values are exceeded, the function of the return spring is no longer guaranteed if the pilot pressure fails!

With control spools V, Z and HZ, the preload valve is not required for flows > 180 l/min.

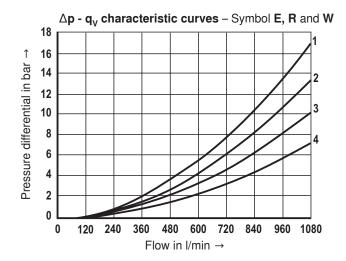
Characteristic curves: Type H-4WEH 25... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

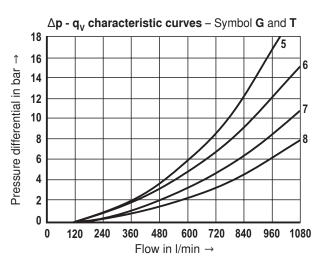
Symbol	Spool position						
	P-AP-BA-TB-1						
E	1	1	1	3			
F	1	4	3	3			
G	3	1	2	4			
Н	4	4	3	4			
J, Q	2	2	3	5			

Symbol	Spool position						
	P-AP-BA-TB-T						
L	2	2	3	3			
M	4	4	1	4			
Р	4	1	1	5			
R	2	1	1	-			

Symbol	Spool position						
	P-A P-B A-T B-T						
U	4	1	1	6			
V	2	4	3	6			
W	1	1	1	3			
Т	3	1	2	4			

Performance limits: Type H-4WEH 25... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)


2-spool position valve maximum flows q _v in l/min								
Symbol	O	perating	pressure	p _{max} in b	ar			
	70	140	210	280	350			
X external, spring end position in the main valve (with $p_{St min} = 13 bar$)								
C, D, K, Y, Z	700	700	700	700	650			
X external, s	pring end	position	in the m	nain valve)			
С	700	700	700	700	650			
D, Y	700	650	400	350	300			
K	700	650	420	370	320			
Z	700	700	650	480	400			
X external, h	ydraulic	end posit	tion in th	e main va	alve			
HC, HD, HK, HZ, HY	700	700	700	700	700			
HC/O HD/O HK/O HZ/O	700	700	700	700	700			
HC/OF HD/OF HK/OF HZ/OF	700	700	700	700	700			


3-spool position valve maximum flows $\mathbf{q}_{\mathbf{V}}$ in I/min

Symbol	Operating pressure p _{max} in bar							
	70	140	210	280	350			
X external, spring centering in the main valve								
E, L, M, Q, U, W,	700	700	700	700	650			
G, T	400	400	400	400	400			
F	650	550	430	330	300			
Н	700	650	550	400	360			
J	700	700	650	600	520			
Р	650	550	430	330	300			
٧	650	550	400	350	310			
R	700	700	700	650	580			

¹⁾ If the specified flow values are exceeded, the function of the return spring is no longer guaranteed if the pilot pressure fails!

Characteristic curves: Type H-4WEH 32... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

Symbol	Spool position						
	P – A	P – B	A – T	B – T	B – A		
E	4	4	3	2	-		
R	4	4	3	_	1		
W	4	4	3	2	_		

Symbol	Spool position						
	P – A	P – B	A – T	B – T	P-T		
G	7	8	7	5	6		
Т	7	8	7	5	6		

Performance limits: Type H-4WEH 32... (measured with HLP46, ϑ_{oil} = 40 °C ± 5 °C)

2-spool position valve maximum flows $\mathbf{q}_{\mathbf{V}}$ in I/min **Symbol** Operating pressure p_{max} in bar 70 140 210 280 350 X external, spring end position in the main valve (with $\mathbf{p}_{St \, min} = 10 \, bar$) C, D, K, 1040 860 750 680 1100 Y, Z X external, spring end position in the main valve 1) C 1100 1040 860 800 700 D, Y 1100 1040 540 480 420 Κ 1100 1040 860 500 450 Z 1100 1040 860 700 650 X external, hydraulic end position in the main valve HC, HD, 1100 1040 860 750 680

HK, HZ, HY

3-spool position valve maximum flows $\mathbf{q}_{\mathbf{v}}$ in I/min

Symbol	Operating pressure p _{max} in bar						
	70	140	210	280	350		
X external, spring centering in the main valve							
E, J, L, M, Q, U, W, R	1100	1040	860	750	680		
G, T, H, F, P	900	900	800	650	450		
V	1100	1000	680	500	450		

¹⁾ If the specified flow values are exceeded, the function of the return spring is no longer guaranteed if the pilot pressure fails!

Performance limits: important notices

Notice (applies to all sizes):

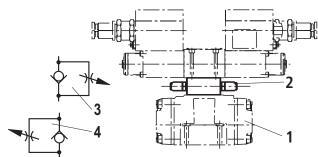
The specified switching power limits are valid for use with two directions of flow (e. g. from P to A and simultaneous return flow from B to T at a ratio of 1:1).

Due to the flow forces acting within the valves, the admissible switching power limit may be considerably lower with only one direction of flow (e. g. from P to A while port B

is blocked, with flow in the same or different directions)! In such cases, please consult us!

The switching power limit was established while the solenoids were at operating temperature, at 10% undervoltage and without tank preloading.

NG16	 With pilot oil supply X internal, a preload valve has to be used for flows < 180 l/min due to the negative overlap of symbols C, V and HC, HZ.
	 With pilot oil supply X internal, sufficient flow has to be ensured due to the negative overlap of symbols F, G, H, P, S and T (for the determination of the required flow, see "Preload valve" characteristic curves (page 20). If the required flow is not reached, a preload valve has to be used (see page 10).
NG25	 With pilot oil supply X internal, a preload valve has to be used for flows < 180 l/min due to the negative overlap of the symbols Z, HZ and V.
	 With pilot oil supply X internal, sufficient flow has to be ensured due to the negative overlap of symbols C, HC, F, G, H, P, and T (for the determination of the required flow, see "Preload valve" characteristic curves (page 20). If the required flow is not reached, a preload valve has to be used (see page 10).
NG32	 With pilot oil supply X internal, a preload valve has to be used for flows < 180 l/min due to the negative overlap of the symbols Z, HZ and V.
	 With pilot oil supply X internal, sufficient flow has to be ensured due to the negative overlap of symbols C, HC, F, G, H, P, and T (for the determination of the required flow, see "Preload valve" characteristic curves (page 20). If the required flow is not reached, a preload valve has to be used (see page 10).

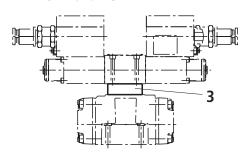

Switching time adjustment, pressure reducing valve, preload valve

Switching time adjustment "S/S2"

The switching time of the main valve (1) is influenced by using a twin throttle check valve (2), type Z2FS 6.

Symbol (3) shows the switching time adjustment "S" (supply control), symbol (4) shows the switching time adjustment "S2" (discharge control)

Type H-4WEH 10 ..4X/...S or S2



Pressure reducing valve "D3"

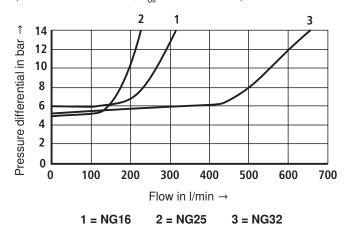
With the design internal pilot oil supply (ET or E) or external pilot oil supply and a pilot pressure of more than 250 bar, the valve must be ordered with a pressure reducing valve (3), type ZDR6PO, and a throttle insert "B10".

Ordering code: "B10..D3"

Type H-4WEH 10 ..4X/.../..D3

Preload valve "P4,5" (not for NG10)

In case of valves with depressurized circulation and internal pilot oil supply, a preload valve is required in channel P of the main valve in order to build up the minimum pilot pressure.


Ordering code: "P4,5"

The pressure differential of the preload valve is to be added to the pressure differential of the main valve (see characteristic curves) to result in one total value.

The cracking pressure amounts to approx. 4.5 bar.

∆p–q_√ characteristic curve

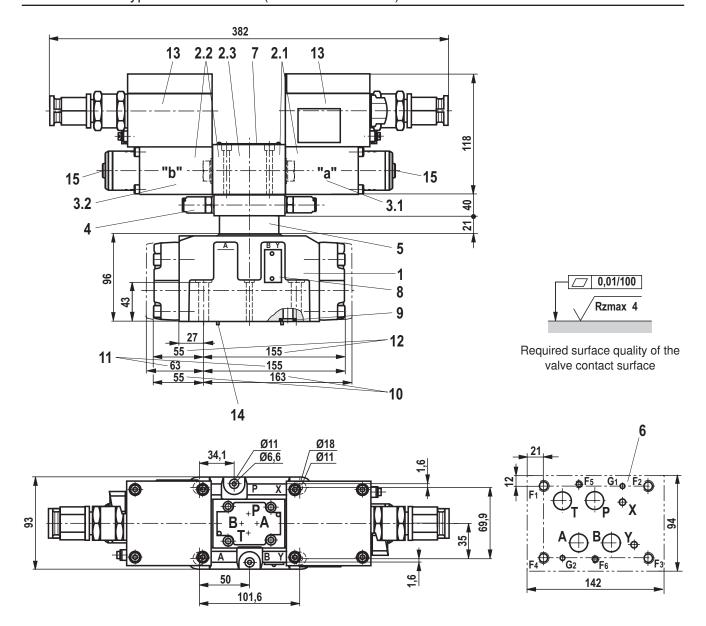
(measured with HLP46, $\vartheta_{oil} = 40 \text{ °C} \pm 5 \text{ °C}$)

Dimensions: Type H-4WEH 10... (dimensions in mm)

Subplates (separate order) with porting pattern according to ISO 4401-05-05-0-05, see data sheet 45100.

Notice:

Subplates are no components in the sense of directive 2014/34/EU and can be used after the manufacturer of the overall system has conducted an assessment of the risk of ignition. The "G...J3" versions are free from aluminum and/or magnesium and galvanized.


Valve mounting screws (separate order)

For reasons of stability, exclusively use the following valve mounting screws:

4 hexagon socket head cap screws ISO 4762 - M6x45-10.9-flZn-240h-L

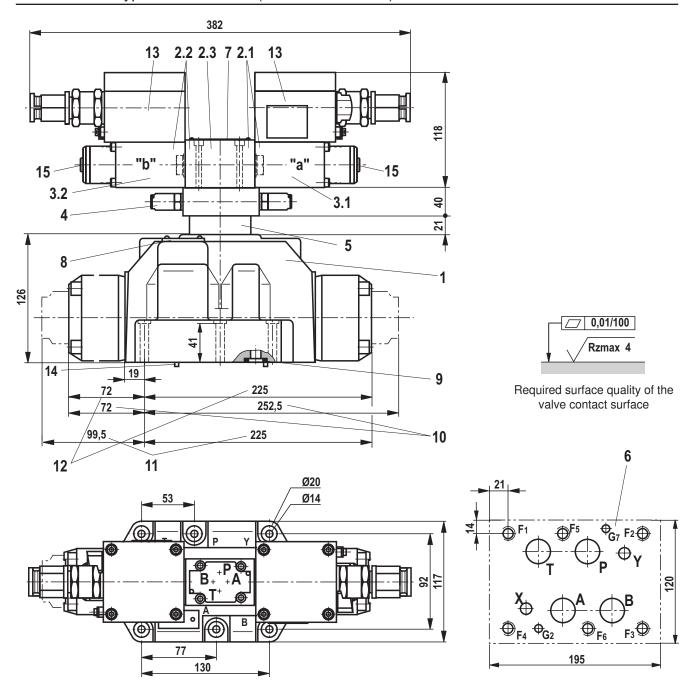
(friction coefficient μ_{total} = 0.09 to 0.14)

Dimensions: Type H-4WEH 16... (dimensions in mm)

Subplates (separate order) with porting pattern according to ISO 4401-07-07-0-05, see data sheet 45100.

Notice:

Subplates are no components in the sense of directive 2014/34/EU and can be used after the manufacturer of the overall system has conducted an assessment of the risk of ignition. The "G...J3" versions are free from aluminum and/or magnesium and galvanized.


Valve mounting screws (separate order)

For reasons of stability, exclusively use the following valve mounting screws:

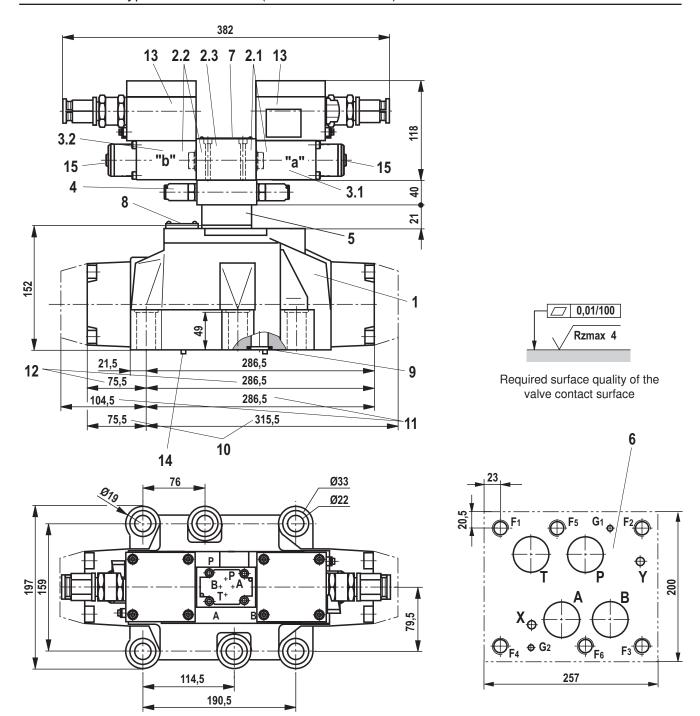
4 hexagon socket head cap screws ISO 4762-M10x60-10.9-flZn-240h-L (friction coefficient $\mu_{\rm total}$ = 0.09 to 0.14)

2 hexagon socket head cap screws ISO 4762-M6x60-10.9-fIZn-240h-L (friction coefficient $\mu_{\rm total}$ = 0.09 to 0.14)

Dimensions: Type H-4WEH 25... (dimensions in mm)

Subplates (separate order) with porting pattern according to ISO 4401-08-08-0-05, see data sheet 45100.

Notice:


Subplates are no components in the sense of directive 2014/34/EU and can be used after the manufacturer of the overall system has conducted an assessment of the risk of ignition. The "G...J3" versions are free from aluminum and/or magnesium and galvanized.

Valve mounting screws (separate order)

For reasons of stability, exclusively use the following valve mounting screws:

6 hexagon socket head cap screws ISO 4762-M12x60-10.9-flZn-240h-L (friction coefficient $\mu_{\rm total}$ = 0.09 to 0.14)

Dimensions: Type H-4WEH 32... (dimensions in mm)

Subplates (separate order) with porting pattern according to ISO 4401-10-09-0-05, see data sheet 45100.

Notice:

Subplates are no components in the sense of directive 2014/34/EU and can be used after the manufacturer of the overall system has conducted an assessment of the risk of ignition. The "G...J3" versions are free from aluminum and/or magnesium and galvanized.

Valve mounting screws (separate order)

For reasons of stability, exclusively use the following valve mounting screws:

6 hexagon socket head cap screws ISO 4762-M20x80-10.9-flZn-240h-L

(friction coefficient $\mu_{\rm total}$ = 0.09 to 0.14)

Dimensions

- 1 Main valve
- 2 Pilot control valve type 4WE 6...XE according to technical data sheet 23178-XD
- 2.1 Pilot control valve type 4WE 6 D... (1 solenoid "a") for main valves with symbols C, D, K, Z symbols HC, HD, HK, HZ
 - Pilot control valve type 4WE 6 JA... (1 solenoid "a") for main valves with symbols EA, FA, etc., spring return
- 2.2 Pilot control valve type 4WE 6 Y... (1 solenoid "b") for main valves with symbol Y symbol HY
 - Pilot control valve type 4WE 6 JB... (1 solenoid "b") for main valves with symbols EB, FB, etc., spring return
- Pilot control valve type 4WE 6J... (2 solenoids) for main valves with 3 spool positions, spring-centered
- 3.1 Valve solenoid "a"
- 3.2 Valve solenoid "b"
 - 4 Switching time adjustment, optional
 - 5 Pressure reducing valve, optional

- Machined valve contact surface
 Porting pattern according to:
 ISO 4401-05-05-0-05 for NG10
 ISO 4401-07-07-0-05 for NG16
 ISO 4401-08-08-0-05 for NG25
 ISO 4401-10-09-0-05 for NG32
- 7 Name plate for the pilot control valve
- 8 Name plate for the complete valve
- 9 R-rings/O-rings
- **10** 2-spool position valves with spring end position in the main valve (C, D, K, Z)
- 11 2-spool position valves with spring end position in the main valve (Y)
- 12 3-spool position valves, spring-centered 2-spool position valves with hydraulic end position in the main valve
- 13 Terminal box
- 14 Locking pin
- 15 Manual override "N"

Further information

Subplates

Directional spool valves, direct operated, with solenoid actuation

Use of non-electrical hydraulic components in an explosive environment (ATEX)

Hydraulic fluids on mineral oil basis

Environmentally compatible hydraulic fluids Flame-resistant, water-free hydraulic fluids

Flame-resistant hydraulic fluids - containing water (HFAE, HFAS, HFB, HFC)

Directional spool valves, pilot-operated, with electro-hydraulic actuation

Directional spool valves, direct operated, with solenoid actuation

Selection of filters

Information on available spare parts

Data sheet 45100

Data sheet 23178-XD

Data sheet 07011

Data sheet 90220

Data sheet 90221

Data sheet 90222

Data sheet 90223

Operating instructions 24751-XD-B

Operating instructions 23178-XD-B

www.boschrexroth.com/filter

www.boschrexroth.com/spc

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Notes

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52 / 18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.