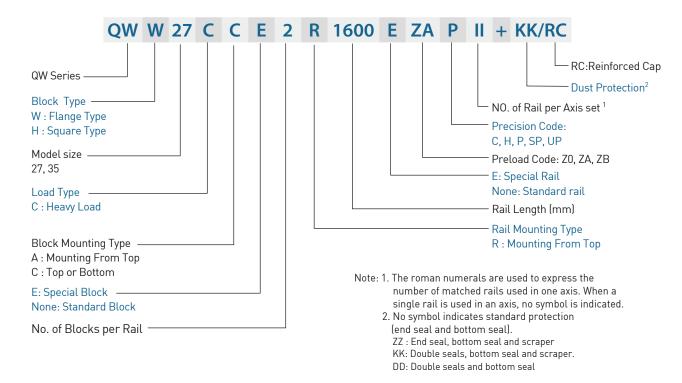
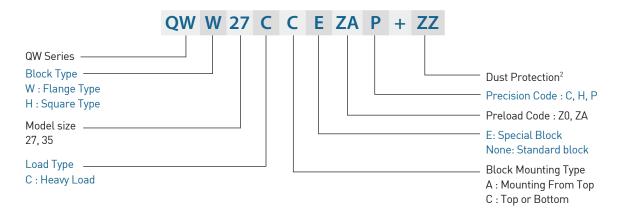

QW Series

2-8 QW Series - Wide Rail Linear Guideway, with SynchMotion™ Technology

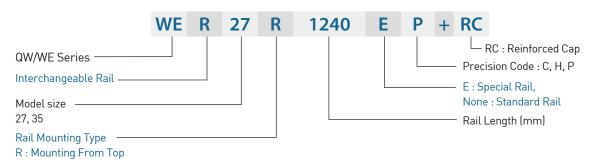
The HIWIN QW series linear guideway with SynchMotionTM Technology possesses all the advantages of the WE series, which features high moment rigidity and is suitable for single rail or space saving applications. With the SynchMotionTM technology it also provides quieter and smoother movement, superior lubrication, and longer service life.


2-8-1 Construction

2-8-2 Model Number of QW Series


HIWIN-QW series guideway can be classified into non-interchangeable and interchangeable types. The sizes are identical. The main difference is that the interchangeable blocks and rails can be freely exchanged. Because of dimensional control, the interchangeable type linear guideway is a perfect choice for the client when rails do not need to be paired for an axis. And since the QW and WE share the identical rails, the customer does not need to redesign when choosing the QW series. Therefore the HIWIN-QW linear guideway has increased applicability.

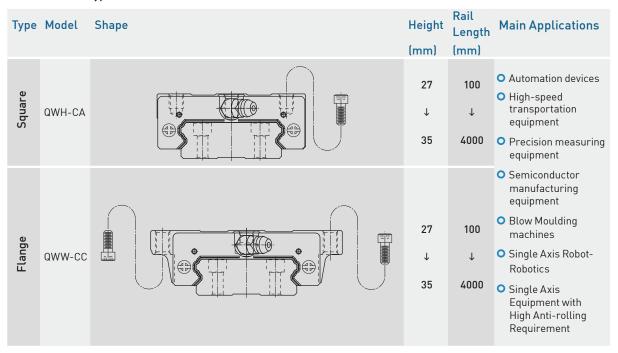
(1) Non-interchangeable type



(2) Interchangeable type

Model Number of QW Block

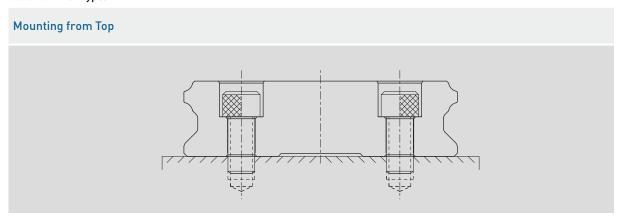
Model Number of QW Rail (QW and WE share the identical rails)


QW Series

2-8-3 Types

(1) Block types

HIWIN offers two types of linear guideways, flange and square types.


Table 2-8-1 Block Types

(2) Rail types

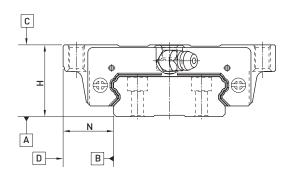

HIWIN offers standard top mounting type.

Table 2-8-2 Rail Types

2-8-4 Accuracy

The accuracy of the QW series can be classified into 5 classes: normal(C), high(H), precision(P), super precision(SP), and ultra precision(UP). Choose the class by referencing the accuracy of selected equipment.

(1) Accuracy of non-interchangeable guideways

Table 2-8-3 Accuracy Standards

Unit: mm

Туре	QW - 27, 35				
Accuracy Classes	Normal (C)	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	± 0.1	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.02	0.015	0.007	0.005	0.003
Variation of width N	0.03	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A	See Table 2-8-5				
Running parallelism of block surface D to surface B	See Table 2-8-5				

(2) Accuracy of interchangeable guideways

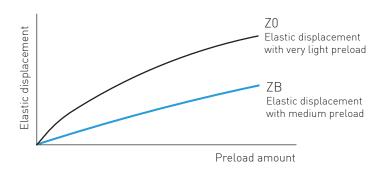
Table 2-8-4 Accuracy Standards

Unit: mm

Item	QW - 27, 35		
Accuracy Classes	Normal (C)	High (H)	Precision (P)
Dimensional tolerance of height H	± 0.1	± 0.04	± 0.02
Dimensional tolerance of width N	± 0.1	± 0.04	± 0.02
Variation of height H	0.02	0.015	0.007
Variation of width N	0.03	0.015	0.007
Running parallelism of block surface C to surface A		See Table 2-8-5	
Running parallelism of block surface D to surface B $$		See Table 2-8-5	

QW Series

(3) Accuracy of running parallelism


Table 2-8-5 Accuracy of Running Parallelism

Rail Length (mm)	Accuracy (µm)				
,	С	Н	Р	SP	UP
~ 100	12	7	3	2	2
100 ~ 200	14	9	4	2	2
200 ~ 300	15	10	5	3	2
300 ~ 500	17	12	6	3	2
500 ~ 700	20	13	7	4	2
700 ~ 900	22	15	8	5	3
900 ~ 1,100	24	16	9	6	3
1,100 ~ 1,500	26	18	11	7	4
1,500 ~ 1,900	28	20	13	8	4
1,900 ~ 2,500	31	22	15	10	5
2,500 ~ 3,100	33	25	18	11	6
3,100 ~ 3,600	36	27	20	14	7
3,600 ~ 4,000	37	28	21	15	7

2-8-5 Preload

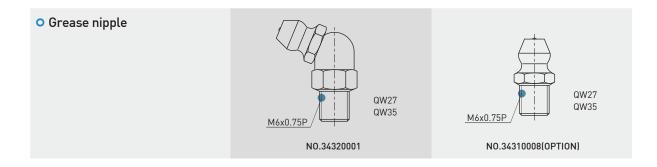
(1) Definition

A preload can be applied to each guideway. Generally, a linear motion guideway has a negative clearance between the groove and balls in order to improve stiffness and maintain high precision. The figure shows that adding a preload can improve stiffness of the linear guideway.

(2) Preload classes

HIWIN offers three standard preloads for various applications and conditions.

Table 2-8-6 Preload Classes


Class	Code	Preload	Condition
Very Light Preload	Z0	0~ 0.02C	Certain load direction, low impact, low precision requirement
Light Preload	ZA	0.03C~0.05C	low load and high precision requirement
Medium Preload	ZB	0.06C~ 0.08C	High rigidity requirement, with vibration and impact

Class	Interchangeable Guideway	Non-Interchangeable Guideway
Preload classes	ZO, ZA	ZO, ZA, ZB

Note: The "C" in the preload column denotes basic dynamic load rating.

2-8-6 Lubrication

(1) Grease

Mounting location

The standard location of the grease fitting is at both ends of the block, the nipple may be mounted in the side or top of the block. For lateral installation, we recommend that the nipple be mounted to the non-reference side, otherwise please contact us. When lubricating from above, in the recess for the O-ring, a smaller, preformed recess can be found. Preheat the 0.8 mm diameter metal tip. Carefully open the small recess with the metal tip and pierce through it. Insert a round sealing ring into the recess. (The round sealing ring is not supplied with the block) Do not open the small recess with a drill bit this may introduce the danger of contamination. It is possible to carry out the lubrication by using the oil-piping joint.

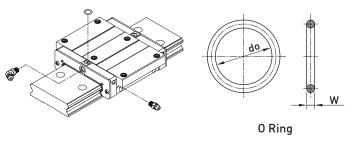
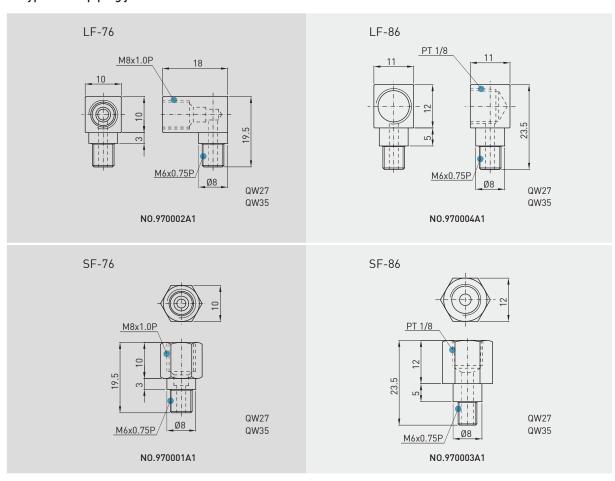


Table 2-8-7 O-Ring size and max. permissible depth for piercing

Size	0-Ring		Lube hole at top: max. permissible depth for piercing	dia.0.8
	do (mm)	W (mm)	T _{max} (mm)	
QW27	4.5 ± 0.15	1.5 ± 0.15	8.4	Tmax
QW35	4.5 ± 0.15	1.5 ± 0.15	10.2	

• The oil amount for a block filled with grease

Table 2-8-8 The oil amount for a block filled with grease


Size	Heavy Load (cm³)
QW27	3.6
QW35	9.5

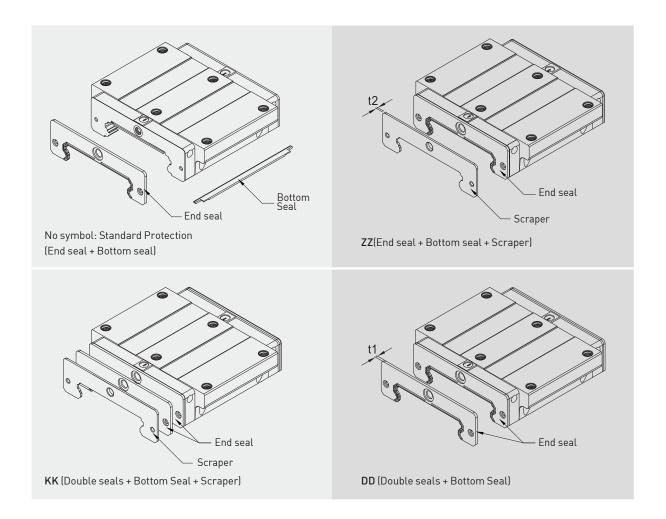
QW Series

(2) Oil

The recommended viscosity of oil is about 30~150cSt. If you need to use oil-type lubrication, please inform us, then the block will not be prelubricated before shipment.

Types of oil piping joint

Oil feeding rate


Table 2-8-9 oil feed rate

Size	feed rate (cm³/hr)
QW27	0.2
QW35	0.3

2-8-7 Dust Protection Equipment

(1) Codes of equipment

If the following equipment is needed, please indicate the code followed by the model number.

(2) End seal and bottom seal

Protects against contaminants entering the block. Reduces potential for groove damage resulting in a reduction of life ratings.

(3) Double seals

Removes foreign matter from the rail preventing contaminants from entering the block.

Table 2-8-10 Dimensions of end seal

Size	Thickness (t1) (mm)
QW27 ES	2
QW35 ES	2

(4) Scraper

Clears larger contaminants, such as weld spatter and metal cuttings, from the rail. Metal scraper protects end seals from excessive damage.

Table 2-8-11 Dimensions of Scraper

Size	Thickness (t2) (mm)
QW27 SC	1
QW35 SC	1.5

QW Series

(5) Bolt caps for rail mounting holes

Rail mounting hole caps prevent foreign matter from accumulating in the mounting holes. Caps are included with the rail package.

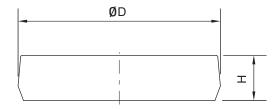


Table 2-8-12 Dimensions of Bolt Caps for Rail Mounting Holes

Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)
QWR27R	M4	7.65	1.1
QWR35R	M6	11.20	2.5

(6) Dimensions of block equipped with the dustproof parts

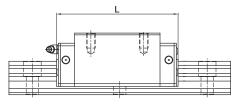


Table 2-8-13 Overall block length

unit: mm

Size	Overall block length (L)				
	Standard	ZZ	DD	KK	
QW27C	73.2	75.2	77.2	79.2	
QW35C	107	110	111	114	

2-8-8 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 2-8-14 Seal Resistance

Size	Resistance N (kgf)
QW27	2.94 (0.3)
QW35	3.92 (0.4)

Note:1kgf=9.81N

2-8-9 Mounting Surface Accuracy Tolerance

Because of the circular-arc contact design, the QW linear guideway can withstand surface-error installation and deliver smooth linear motion. When the mounting surface meets the accuracy requirements of the installation, the high accuracy and rigidity of the guideway will be obtained without any difficulty. For faster installation and smoother movement, HIWIN offers a preload with normal clearance because of its ability to absorb higher deviations in mounting surface inaccuracies.

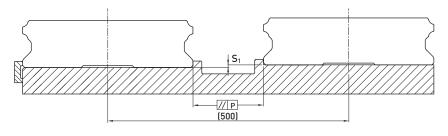


Table 2-8-15 Max. Parallelism Tolerance (P)

unit: µm

Size	Preload classes											
3126	Z0	ZA	ZB									
QW27	25	20	-									
QW35	30	22	20									

Table 2-8-16 Max. Tolerance of Reference Surface Height (S₁)

unit: µm

Size	Preload classes		
Size	Z0	ZA	ZB
QW27	130	85	-
QW35	130	85	70

2-8-10 Cautions for Installation

(1) Shoulder heights and chamfers

Improper shoulder heights and chamfers of mounting surfaces will cause deviations in accuracy and rail or block interference with the chamfered part.

When recommended shoulder heights and chamfers are used, problems with installation accuracy should be eliminated.

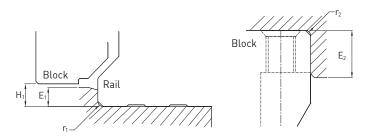


Table 2-8-17 Shoulder Heights and Chamfers

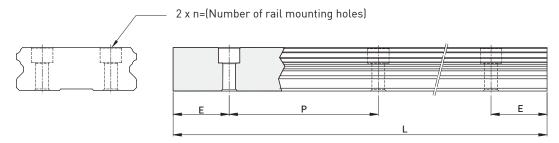
unit: mm

Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height of the rail E ₁ (mm)	Shoulder height of the block E ₂ (mm)	Clearance under block H ₁ (mm)
QW27	0.5	0.4	2.5	7.0	4.0
QW35	0.5	0.5	2.5	10.0	4.0

(2) Tightening Torque of Bolts for Installation

Improperly tightened mounting bolts will seriously affect the accuracy of linear guide installations. The following tightening torques for different sizes of bolts are recommended.

Table 2-8-18 Tightening Torque


Size	Bolt size	Torque N-cm(kgf-cm)												
Size	Butt Size	Iron	Casting	Aluminum										
QW27	M4×0.7P×16L	392 (40)	274 (28)	206 (21)										
QW35	M6×1P×20L	1373 (140)	921 (94)	686 (70)										

Note: 1 kgf = 9.81 N

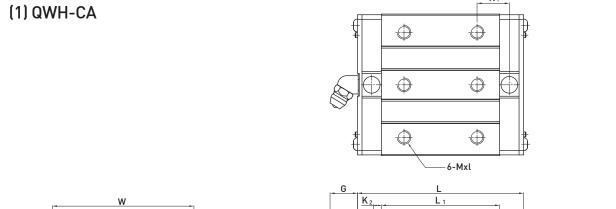
QW Series

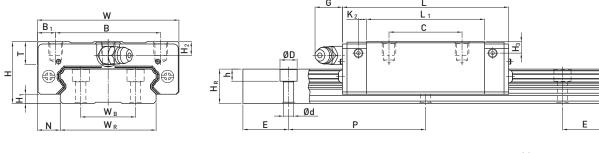
2-8-11 Standard and Maximum Lengths of Rail

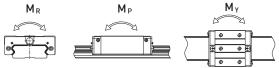
HIWIN offers a number of standard rail lengths. Standard rail lengths feature end mounting hole placements set to predetermined values (E). For non-standard rail lengths, be sure to specify the E-value to be no greater than 1/2 the pitch (P) dimension. An E-value greater than this will result in unstable rail ends.

- L: Total length of rail (mm)
- n: Number of mounting holes
- P: Distance between any two holes (mm)
- E: Distance from the center of the last hole to the edge (mm)

Table 2-8-19 Rail Standard Length and Max. Length

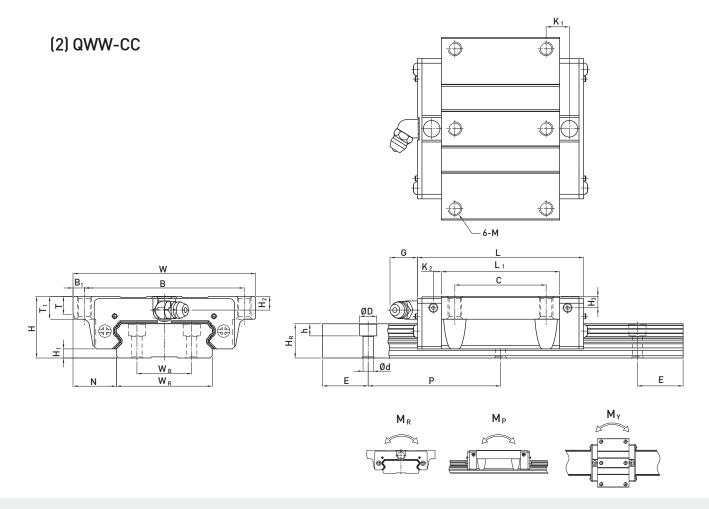

unit: mm


Table 2 o 15 Hall Stallaal	a Echigan and Max. Echigan	
Item	QWR27	QWR35
	220 (4)	280 (4)
	280 (5)	440 (6)
	340 (6)	600 (8)
	460 (8)	760 (10)
Standard Length L(n)	640 (11)	1000 (13)
	820 (14)	1,640 (21)
	1,000 (17)	2,040 (26)
	1,240 (21)	2,520 (32)
	1,600 (27)	3,000 (38)
Pitch (P)	60	80
Distance to End (E _s)	20	20
Max. Standard Length	4,000 (67)	3,960 (50)
Max. Length	4,000	4,000


Note: 1. Tolerance of E value for standard rail is 0.5~-0.5 mm. Tolerance of E value for jointed rail is 0~-0.3 mm.

- $2. \ Maximum \ standard \ length \ means \ the \ max. \ rail \ length \ with \ standard \ E \ value \ on \ both \ sides.$
- 3. If different E value is needed, please contact HIWIN.

2-8-12 Dimensions for HIWIN QW Series



Madal Na	of A	ensi sser (mm	nbly		Dimensions of Block (mm)													Dimensions of Rail (mm)								Mounting Bolt for Rail Basic		Moment			Weight	
Model No.				W	В	B ₁	С	L ₁	L	K ₁	K ₂	G	Mxl	Т	H ₂	H ₃	\mathbf{W}_{R}	W_{B}	H_R	D	h	d	Р	E			Rating C ₀ (kN)	M _R	M _P		Block kg	
QWH27CA	27	4	10	62	46	8	32	56.6	73.2	15.45	3.15	12	M6x6	10	6	5	42	24	15	7.5	5.3	4.5	60	20	M4x16	16	22.2	0.42	0.20	0.20	0.35	4.7
QWH35CA	35	4	15.5	100	76	12	50	83	107	21.5	5.5	12	M8x8	13	8	6.5	69	40	19	11	9	7	80	20	M6x20	36.8	49.2	1.51	0.65	0.65	1.1	9.7

Note : 1 kgf = 9.81 N

QW Series

	Dim	nens	ions																								Basic		Sta	atic Rat	14/-	tula.	
Model No.	of A	sser (mm			Dimensions of Block (mm)													Dimensions of Rail (mm)						mm)		Bolt for Rail	Dynamic Load Rating	Load		1omen		ight	
	Н	H ₁	N	w	В	B ₁	С	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	W _R	W _B	H_R	D	h	d	Р	E	(mm)	C(kN)	C ₀ (kN)	M _R	M _P		Block	
QWW27CC	27	4	19	80	70	5	40	56.6	73.2	15.45	3.15	12	M6	8	10	6	5	42	24	15	7.5	5.3	4.5	60	20	M4x16	16	22.2	0.42	0.20	0.20	0.43	4.7
QWW35CC	35	4	25.5	120	107	6.5	60	83	107	21.5	5.5	12	M8	11.2	14	8	6.5	69	40	19	11	9	7	80	20	M6x20	36.8	49.2	1.51	0.65	0.65	1.26	9.7

Note : 1 kgf = 9.81 N